The formation and progression of in-stent restenosis (ISR) in bifurcated vessels may vary depending on the technique used for stenting. This study evaluates the effect of a variety of mesh styles on the accuracy and reliability of computational fluid dynamics (CFD) models in predicting these regions, using an idealized stented nonbifurcated model. The wall shear stress (WSS) and the near-stent recirculating vortices are used as determinants. The meshes comprise unstructured tetrahedral and polyhedral elements. The effects of local refinement, as well as higher-order elements such as prismatic inflation layers and internal hexahedral core, have also been examined. The uncertainty associated with individual mesh style was assessed through verification of calculations using the grid convergence index (GCI) method. The results obtained show that the only condition which allows the reliable comparison of uncertainty estimation between different meshing styles is that the monotonic convergence of grid solutions is in the asymptotic range. Comparisons show the superiority of a flow-adaptive polyhedral mesh over the commonly used adaptive and nonadaptive tetrahedral meshes in terms of resolving the near-stent flow features, GCI value, and prediction of WSS. More accurate estimation of hemodynamic factors was obtained using higher-order elements, such as hexahedral or prismatic grids. Incorporating these higher-order elements, however, was shown to introduce some degrees of numerical diffusion at the transitional area between the two meshes, not necessarily translating into high GCI value. Our data also confirmed the key role of local refinement in improving the performance and accuracy of nonadaptive mesh in predicting flow parameters in models of stented artery. The results of this study can provide a guideline for modeling biofluid domain in complex bifurcated arteries stented in regards to various stenting techniques.

References

1.
Stone
,
P. H.
,
Coskun
,
A. U.
,
Kinlay
,
S.
,
Clark
,
M. E.
,
Sonka
,
M.
,
Wahle
,
A.
,
Ilegbusi
,
O. J.
,
Yeghiazarians
,
Y.
,
Popma
,
J. J.
,
Orav
,
J.
,
Kuntz
,
R. E.
, and
Feldman
,
C. L.
,
2003
, “
Effect of Endothelial Shear Stress on the Progression of Coronary Artery Disease, Vascular Remodeling, and In-Stent Restenosis in Humans: In Vivo 6-Month Follow-Up Study
,”
Circulation
,
108
(
4
), pp.
438
444
.
2.
Elezi
,
S.
,
Kastrati
,
A.
,
Neumann
,
F. J.
,
Hadamitzky
,
M.
,
Dirschinger
,
J.
, and
Schömig
,
A.
,
1998
, “
Vessel Size and Long-Term Outcome After Coronary Stent Placement
,”
Circulation
,
98
(
18
), pp.
1875
1880
.
3.
Yamashita
,
T.
,
Nishida
,
T.
,
Adamian
,
M. G.
,
Briguori
,
C.
,
Vaghetti
,
M.
,
Corvaja
,
N.
,
Albiero
,
R.
,
Finci
,
L.
,
Di Mario
,
C.
,
Tobis
,
J. M.
, and
Colombo
,
A.
,
2000
, “
Bifurcation Lesions: Two Stents Versus One Stent—Immediate and Follow-Up Results
,”
J. Am. Coll. Cardiol.
,
35
(
5
), pp.
1145
1151
.
4.
Al Suwaidi
,
J.
,
Berger
,
P. B.
,
Rihal
,
C. S.
,
Garratt
,
K. N.
,
Bell
,
M. R.
,
Ting
,
H. H.
,
Bresnahan
,
J. F.
,
Grill
,
D. E.
, and
Holmes
,
D. R.
,
2000
, “
Immediate and Long-Term Outcome of Intracoronary Stent Implantation for True Bifurcation Lesions
,”
J. Am. Coll. Cardiol.
,
35
(
4
), pp.
929
936
.
5.
Gastaldi
,
D.
,
Morlacchi
,
S.
,
Nichetti
,
R.
,
Capelli
,
C.
,
Dubini
,
G.
,
Petrini
,
L.
, and
Migliavacca
,
F.
,
2010
, “
Modelling of the Provisional Side-Branch Stenting Approach for the Treatment of Atherosclerotic Coronary Bifurcations: Effects of Stent Positioning
,”
Biomech. Model. Mechanobiol.
,
9
(
5
), pp.
551
561
.
6.
Baber
,
U.
,
Kini
,
A. S.
, and
Sharma
,
S. K.
,
2010
, “
Stenting of Complex Lesions: An Overview
,”
Nat. Rev. Cardiol.
,
7
(
9
), pp.
485
496
.
7.
Iakovou
,
I.
,
Foin
,
N.
,
Andreou
,
A.
,
Viceconte
,
N.
, and
Di Mario
,
C.
,
2011
, “
New Strategies in the Treatment of Coronary Bifurcations
,”
Herz
,
36
(
3
), pp.
198
212
.
8.
Sharma
,
S. K.
,
2005
, “
Simultaneous Kissing Drug-Eluting Stent Technique for Percutaneous Treatment of Bifurcation Lesions in Large-Size Vessels
,”
Catheterization Cardiovasc. Intervention
,
65
(
1
), pp.
10
16
.
9.
Latib
,
A.
,
Colombo
,
A.
, and
Sangiorgi
,
G. M.
,
2009
, “
Bifurcation Stenting: Current Strategies and New Devices
,”
Heart
,
95
(
6
), pp.
495
504
.
10.
Samady
,
H.
,
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Suo
,
J.
,
Dhawan
,
S. S.
,
Maynard
,
C.
,
Timmins
,
L. H.
,
Quyyumi
,
A. A.
, and
Giddens
,
D. P.
,
2011
, “
Coronary Artery Wall Shear Stress is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease
,”
Circulation
,
124
(
7
), pp.
779
788
.
11.
Rajamohan
,
D.
,
Banerjee
,
R. K.
,
Back
,
L. H.
,
Ibrahim
,
A. A.
, and
Jog
,
M. A.
,
2006
, “
Developing Pulsatile Flow in a Deployed Coronary Stent
,”
ASME J. Biomech. Eng.
,
128
(
3
), pp.
347
359
.
12.
Bluestein
,
D.
,
Li
,
Y. M.
, and
Krukenkamp
,
I. B.
,
2002
, “
Free Emboli Formation in the Wake of Bi-Leaflet Mechanical Heart Valves and the Effects of Implantation Techniques
,”
J. Biomech.
,
35
(
12
), pp.
1533
1540
.
13.
Deplano
,
V.
,
Bertolotti
,
C.
, and
Barragan
,
P.
,
2004
, “
Three-Dimensional Numerical Simulations of Physiological Flows in a Stented Coronary Bifurcation
,”
Med. Biol. Eng. Comput.
,
42
(
5
), pp.
650
659
.
14.
Rikhtegar
,
F.
,
Pacheco
,
F.
,
Wyss
,
C.
,
Stok
,
K. S.
,
Ge
,
H.
,
Choo
,
R. J.
,
Ferrari
,
A.
,
Poulikakos
,
D.
,
Müller
,
R.
, and
Kurtcuoglu
,
V.
,
2013
, “
Compound Ex Vivo and In Silico Method for Hemodynamic Analysis of Stented Arteries
,”
PLoS One
,
8
(
3
), p.
e58147
.
15.
Hu
,
Z.
,
Chen
,
S.
,
Zhang
,
J.
,
Shan
,
S.
,
Liu
,
Z.
,
Ye
,
F.
,
Kan
,
J.
,
Xu
,
H.
,
Nguyen
,
K.
,
Kwan
,
T.
,
Nguyen
,
T.
, and
Hoang
,
T.
,
2010
, “
Distribution and Magnitude of Shear Stress after Coronary Bifurcation Lesions Stenting With the Classical Crush Technique: A New Predictor for In-Stent Restenosis
,”
J. Intervention Cardiol.
,
23
(
4
), pp.
330
340
.
16.
Morlacchi
,
S.
,
Chiastra
,
C.
,
Dubini
,
G.
, and
Migliavacca
,
F.
,
2011
, “
Numerical Analysis of the Culotte Stenting Technique: Comparison Between a Standard and a Dedicated Device
,”
2011 SCATh Joint Workshop on New Technologies for Computer/Robot Assisted Surgery
, pp.
1
4
.
17.
Moore
,
J. E.
,
Timmins
,
L. H.
, and
Ladisa
,
J. F.
,
2010
, “
Coronary Artery Bifurcation Biomechanics and Implications for Interventional Strategies
,”
Catheterization Cardiovasc. Intervention
,
76
(
6
), pp.
836
843
.
18.
Rikhtegar
,
F.
,
Pacheco
,
F.
,
Wyss
,
C.
,
Stok
,
K. S.
,
Poulikakos
,
D.
,
Müller
,
R.
, and
Kurtcuoglu
,
V.
,
2014
, “
Hemodynamics in Coronary Arteries With Overlapping Stents
,”
J. Biomech.
,
47
(
2
), pp.
505
511
.
19.
Niu
,
J.
,
Qiao
,
A.
, and
Jiao
,
L.
,
2013
, “
Hemodynamic Analysis of Stent Expansion Ratio for Vertebral Artery Ostial Stenosis Intervention
,”
J. Mech. Med. Biol.
,
13
(
4
), p.
1350058
.
20.
Chen
,
H. Y.
,
Moussa
,
I. D.
,
Davidson
,
C.
, and
Kassab
,
G. H.
,
2012
, “
Impact of Main Branch Stenting on Endothelial Shear Stress: Role of Side Branch Diameter, Angle and Lesion
,”
J. R. Soc. Interface
,
9
(
71
), pp.
1187
1193
.
21.
Katritsis
,
D. G.
,
Theodorakakos
,
A.
,
Pantos
,
I.
,
Gavaises
,
M.
,
Karcanias
,
N.
, and
Efstathopoulos
,
E. P.
,
2012
, “
Flow Patterns at Stented Coronary Bifurcations: Computational Fluid Dynamics Analysis
,”
Circ. Cardiovasc. Intervention
,
5
(
4
), pp.
530
539
.
22.
Spiegel
,
M.
,
Redel
,
T.
,
Zhang
,
Y. J.
,
Struffert
,
T.
,
Hornegger
,
J.
,
Grossman
,
R. G.
,
Doerfler
,
A.
, and
Karmonik
,
C.
,
2011
, “
Tetrahedral vs. Polyhedral Mesh Size Evaluation on Flow Velocity and Wall Shear Stress for Cerebral Hemodynamic Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
1
), pp.
9
22
.
23.
Tambasco
,
M.
, and
Steinman
,
D. A.
,
2002
, “
On Assessing the Quality of Particle Tracking Through Computational Fluid Dynamic Models
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
166
175
.
24.
Prakash
,
S.
, and
Ethier
,
C. R.
,
2001
, “
Requirements for Mesh Resolution in 3D Computational Hemodynamics
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
134
144
.
25.
Lotfi
,
A.
, and
Barber
,
T. J.
,
2014
, “
Optimization of CFD Meshing for Stented Vessel Geometries
,”
Appl. Mech. Mater.
,
553
, pp.
373
378
.
26.
Celik
,
I.
, and
Karatekin
,
O.
,
1997
, “
Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
584
590
.
27.
Roache
,
P. J.
,
1972
,
Computational Fluid Dynamics
,
Hermosa
, Albuquerque, NM.
28.
Zubair
,
M.
,
Abdullah
,
M. Z.
, and
Ahmad
,
K. A.
,
2013
, “
Hybrid Mesh for Nasal Airflow Studies
,”
Comput. Math. Methods Med.
,
2013
, p.
727362
.
29.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.
30.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
31.
Longest
,
P. W.
, and
Vinchurkar
,
S.
,
2007
, “
Effects of Mesh Style and Grid Convergence on Particle Deposition in Bifurcating Airway Models With Comparisons to Experimental Data
,”
Med. Eng. Phys.
,
29
(
3
), pp.
350
366
.
32.
Vinchurkar
,
S.
, and
Longest
,
P. W.
,
2008
, “
Evaluation of Hexahedral, Prismatic and Hybrid Mesh Styles for Simulating Respiratory Aerosol Dynamics
,”
Comput. Fluids
,
37
(
3
), pp.
317
331
.
33.
Ilayperuma
,
I.
,
Nanayakkara
,
B. G.
, and
Palahepitiya
,
K. N.
,
2011
, “
Sexual Differences in the Diameter of Coronary Arteries in an Adult Sri Lankan Population
,”
Int. J. Morphol.
,
29
(
4
), pp.
1444
1448
.
34.
Colombo
,
A.
,
Stankovic
,
G.
, and
Moses
,
G. W.
,
2002
, “
Selection of Coronary Stents
,”
J. Am. Coll. Cardiol.
,
40
(
6
), pp.
1021
1033
.
35.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.
36.
Back
,
M.
,
Kopchok
,
G.
,
Mueller
,
M.
,
Cavaye
,
D.
,
Donayre
,
C.
, and
White
,
R. A.
,
1994
, “
Changes in Arterial Wall Compliance After Endovascular Stenting
,”
J. Vasc. Surg.
,
19
(
5
), pp.
905
911
.
37.
Marossy
,
A.
,
Švorc
,
P.
,
Kron
,
I.
, and
Grešová
,
S.
,
2009
, “
Hemorheology and Circulation
,”
Clin. Hemorheol. Microcirc.
,
42
(4), pp.
239
258
.
38.
Wilcox
,
D. C.
,
1993
,
Turbulence Modelling for CFD
,
DCW Industries
,
La Canada, CA
.
39.
LaDisa
,
J. F.
,
Olson
,
L. E.
,
Guler
,
I.
,
Hettrick
,
D. A.
,
Audi
,
S. H.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
,
2004
, “
Stent Design Properties and Deployment Ratio Influence Indexes of Wall Shear Stress: A Three-Dimensional Computational Fluid Dynamics Investigation Within a Normal Artery
,”
J. Appl. Physiol.
,
97
(
1
), pp.
424
430
.
40.
Committee V 20
,
2009
,
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
American Society of Mechanical Engineers
,
New York
.
41.
Roache
,
P. J.
,
2003
, “
Error Bars for CFD
,”
AIAA
Paper No. 2003-408.
42.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2011
, “
Evaluation of Extrapolation-Based Discretization Error and Uncertainty Estimators
,”
AIAA
Paper No. 2011-215.
43.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2013
, “
A New Extrapolation-Based Uncertainty Estimator for Computational Fluid Dynamics
,”
AIAA
Paper No. 2013-0260.
44.
Oberkampf
,
W. L.
, and
Trucano
,
T. J.
,
2002
, “
Verification and Validation in Computational Fluid Dynamics
,”
Prog. Aerosp. Sci.
,
38
(
3
), pp.
209
272
.
45.
Eça
,
L.
, and
Hoekstra
,
M.
,
2009
, “
Evaluation of Numerical Error Estimation Based on Grid Refinement Studies With the Method of the Manufactured Solutions
,”
Comput. Fluids
,
38
(
8
), pp.
1580
1591
.
46.
Cadafalch
,
J.
,
2002
, “
Verification of Finite Volume Computations on Steady State Fluid Flow and Heat Transfer
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
11
21
.
47.
Eça
,
L.
,
Vaz
,
G. B.
,
Falcao De Campos
,
J. A. C.
, and
Hoekstra
,
M.
,
2004
, “
Verification of Calculations of the Potential Flow Around Two-Dimensional Foils
,”
AIAA J.
,
42
(
12
), pp.
2401
2407
.
You do not currently have access to this content.