The unconfined compression experiments are commonly used for characterizing the mechanical behavior of hydrated soft tissues such as articular cartilage. Several analytical constitutive models have been proposed over the years to analyze the unconfined compression experimental data and subsequently estimate the material parameters. Nevertheless, new mathematical models are still required to obtain more accurate numerical estimates. The present study aims at developing a linear transversely isotropic poroviscoelastic theory by combining a viscoelastic material law with the transversely isotropic biphasic model. In particular, an integral type viscoelastic model is used to describe the intrinsic viscoelastic properties of a transversely isotropic solid matrix. The proposed constitutive theory incorporates viscoelastic contributions from both the fluid flow and the intrinsic viscoelasticity to the overall stress-relaxation behavior. Moreover, this new material model allows investigating the biomechanical properties of tissues whose extracellular matrix exhibits transverse isotropy. In the present work, a comprehensive parametric study was conducted to determine the influence of various material parameters on the stress–relaxation history. Furthermore, the efficacy of the proposed theory in representing the unconfined compression experiments was assessed by comparing its theoretical predictions with those obtained from other versions of the biphasic theory such as the isotropic, transversely isotropic, and viscoelastic models. The unconfined compression behavior of articular cartilage as well as corneal stroma was used for this purpose. It is concluded that while the proposed model is capable of accurately representing the viscoelastic behavior of any hydrated soft tissue in unconfined compression, it is particularly useful in modeling the behavior of those with a transversely isotropic skeleton.

References

1.
Hatami-Marbini
,
H.
,
2013
, “
Mechano-Electrochemical Mixture Theories for the Multiphase Fluid Infiltrated Poroelastic Media
,”
Handbook on Micromechanics and Nanomechanics
,
S.
Li
, and
X.-L.
Gao Pan
, eds.,
Stanford Publishing
,
Singapore
, pp.
273
302
.
2.
Mow
,
V.
,
Kuei
,
S.
,
Lai
,
W.
, and
Armstrong
,
C.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.
3.
Green
,
A.
, and
Naghdi
,
P.
,
1970
, “
The Flow of Fluid Through an Elastic Solid
,”
Acta Mech.
,
9
(
3–4
), pp.
329
340
.
4.
Bowen
,
R.
,
1976
, “
Theory of Mixtures
,”
Continuum Physics
,
A. C.
Eringen
, ed.,
Academic Press
,
New York
.
5.
Armstrong
,
C.
,
Lai
,
W.
, and
Mow
,
V.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.
6.
Suh
,
J.-K.
, and
DiSilvestro
,
M.
,
1999
, “
Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue
,”
ASME J. Appl. Mech.
,
66
(
2
), pp.
528
535
.
7.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Suh
,
J.-K. F.
,
2001
, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I–Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
191
197
.
8.
Mak
,
A.
,
1986
, “
The Apparent Viscoelastic Behavior of Articular Cartilage: The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
,
108
(
2
), pp.
123
130
.
9.
Mak
,
A.
,
Lai
,
W.
, and
Mow
,
V.
,
1987
, “
Biphasic Indentation of Articular Cartilage—I. Theoretical Analysis
,”
J. Biomech.
,
20
(
7
), pp.
703
714
.
10.
Setton
,
L. A.
,
Zhu
,
W.
, and
Mow
,
V. C.
,
1993
, “
The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior
,”
J. Biomech.
,
26
(
4
), pp.
581
592
.
11.
Schinagl
,
R. M.
,
Ting
,
M. K.
,
Price
,
J. H.
, and
Sah
,
R. L.
,
1996
, “
Video Microscopy to Quantitate the Inhomogeneous Equilibrium Strain Within Articular Cartilage During Confined Compression
,”
Ann. Biomed. Eng.
,
24
(
4
), pp.
500
512
.
12.
Cohen
,
B.
,
Lai
,
W.
, and
Mow
,
V.
,
1998
, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
,
120
(
4
), pp.
491
496
.
13.
Soulhat
,
J.
,
Buschmann
,
M.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
121
(
3
), pp.
340
347
.
14.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
576
586
.
15.
Li
,
L.
,
Buschmann
,
M.
, and
Shirazi-Adl
,
A.
,
2000
, “
A Fibril Reinforced Nonhomogeneous Poroelastic Model for Articular Cartilage: Inhomogeneous Response in Unconfined Compression
,”
J. Biomech.
,
33
(
12
), pp.
1533
1541
.
16.
Wang
,
C. C.
,
Hung
,
C. T.
, and
Mow
,
V. C.
,
2001
, “
An Analysis of the Effects of Depth-Dependent Aggregate Modulus on Articular Cartilage Stress-Relaxation Behavior in Compression
,”
J. Biomech.
,
34
(
1
), pp.
75
84
.
17.
Huang
,
C.-Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
410
417
.
18.
Viidik
,
A.
,
1968
, “
A Rheological Model for Uncalcified Parallel-Fibred Collagenous Tissue
,”
J. Biomech.
,
1
(
1
), pp.
3
11
.
19.
Mow
,
V.
,
Mak
,
A.
,
Lai
,
W.
,
Rosenberg
,
L.
, and
Tang
,
L.-H.
,
1984
, “
Viscoelastic Properties of Proteoglycan Subunits and Aggregates in Varying Solution Concentrations
,”
J. Biomech.
,
17
(
5
), pp.
325
338
.
20.
Zhu
,
W.
, and
Mow
,
V.
,
1990
, “
Viscometric Properties of Proteoglycan Solutions at Physiological Concentrations
,”
Biomechanics of Diarthrodial Joints
,
V
.
Mow
,
A
.
Ratcliffe
, and
S
.
Woo
, eds.,
Springer
,
New York
, pp.
313
344
.
21.
Curnier
,
A.
,
He
,
Q.-C.
, and
Zysset
,
P.
,
1994
, “
Conewise Linear Elastic Materials
,”
J. Elasticity
,
37
(
1
), pp.
1
38
.
22.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1990
, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results
,”
J. Biomech.
,
23
(
2
), pp.
145
155
.
23.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics—II. A Continuum Model of Cartilage Electrokinetics and Correlation With Experiments
,”
J. Biomech.
,
20
(
6
), pp.
629
639
.
24.
Lai
,
W.
,
Hou
,
J.
, and
Mow
,
V.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.
25.
Huyghe
,
J. M.
, and
Janssen
,
J.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
,
35
(
8
), pp.
793
802
.
26.
Li
,
L.
,
Buschmann
,
M.
, and
Shirazi-Adl
,
A.
,
2003
, “
Strain-Rate Dependent Stiffness of Articular Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
161
168
.
27.
Julkunen
,
P.
,
Wilson
,
W.
,
Jurvelin
,
J. S.
,
Rieppo
,
J.
,
Qu
,
C.-J.
,
Lammi
,
M. J.
, and
Korhonen
,
R. K.
,
2008
, “
Stress–Relaxation of Human Patellar Articular Cartilage in Unconfined Compression: Prediction of Mechanical Response by Tissue Composition and Structure
,”
J. Biomech.
,
41
(
9
), pp.
1978
1986
.
28.
Hatami-Marbini
,
H.
, and
Etebu
,
E.
,
2013
, “
Hydration Dependent Biomechanical Properties of the Corneal Stroma
,”
Exp. Eye Res.
,
116
, pp.
47
54
.
29.
Jue
,
B.
, and
Maurice
,
D. M.
,
1986
, “
The Mechanical Properties of the Rabbit and Human Cornea
,”
J. Biomech.
,
19
(
10
), pp.
847
853
.
30.
Hatami-Marbini
,
H.
, and
Rahimi
,
A.
,
2014
, “
Effects of Bathing Solution on Tensile Properties of the Cornea
,”
Exp. Eye Res.
,
120
, pp.
103
108
.
31.
Bryant
,
M. R.
, and
McDonnell
,
P. J.
,
1996
, “
Constitutive Laws for Biomechanical Modeling of Refractive Surgery
,”
ASME J. Biomech. Eng.
,
118
(
4
), pp.
473
481
.
32.
Nguyen
,
T.
,
Jones
,
R.
, and
Boyce
,
B.
,
2008
, “
A Nonlinear Anisotropic Viscoelastic Model for the Tensile Behavior of the Corneal Stroma
,”
ASME J. Biomech. Eng.
,
130
(
4
), p.
041020
.
33.
Hatami-Marbini
,
H.
, and
Rahimi
,
A.
,
2015
, “
Stiffening Effects of Riboflavin/UVA Corneal Collagen Cross-Linking Is Hydration Dependent
,”
J. Biomech.
,
48
(
6
), pp.
1052
1057
.
34.
Pandolfi
,
A.
, and
Holzapfel
,
G. A.
,
2008
, “
Three-Dimensional Modeling and Computational Analysis of the Human Cornea Considering Distributed Collagen Fibril Orientations
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061006
.
35.
Maurice
,
D. M.
,
1984
, “
The Cornea and Sclera
,”
The Eye
, Vol.
1
,
Academic Press
,
New York
, pp.
1
158
.
36.
Ruberti
,
J. W.
,
Sinha Roy
,
A.
, and
Roberts
,
C. J.
,
2011
, “
Corneal Biomechanics and Biomaterials
,”
Annu. Rev. Biomed. Eng.
,
13
(
1
), pp.
269
295
.
37.
Hatami-Marbini
,
H.
, and
Etebu
,
E.
,
2013
, “
An Experimental and Theoretical Analysis of Unconfined Compression of Corneal Stroma
,”
J. Biomech.
,
46
(
10
), pp.
1752
1758
.
38.
Hatami-Marbini
,
H.
,
2014
, “
Hydration Dependent Viscoelastic Tensile Behavior of Cornea
,”
Ann. Biomed. Eng.
,
42
(
8
), pp.
1740
1748
.
39.
Fung
,
Y.
,
1981
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
40.
Hatami-Marbini
,
H.
, and
Etebu
,
E.
,
2012
, “
Rate Dependent Biomechanical Properties of Corneal Stroma in Unconfined Compression
,”
Biorheology
,
50
(
3–4
), pp.
133
147
.
41.
De Hoog
,
F. R.
,
Knight
,
J.
, and
Stokes
,
A.
,
1982
, “
An Improved Method for Numerical Inversion of Laplace Transforms
,”
SIAM J. Sci. Stat. Comput.
,
3
(
3
), pp.
357
366
.
42.
Hatami-Marbini
,
H.
,
2014
, “
Viscoelastic Shear Properties of the Corneal Stroma
,”
J. Biomech.
,
47
(
3
), pp.
723
728
.
43.
Hatami-Marbini
,
H.
, and
Pinsky
,
P. M.
,
2009
, “
On Mechanics of Connective Tissue: Assessing the Electrostatic Contribution to Corneal Stroma Elasticity
,”
Materials Research Society Symposium
, Boston, MA, Dec. 1–4,
Cambridge University Press
,
Cambridge, UK
, Vol.
1239
, pp.
41
46
.
44.
Huang
,
C.-Y.
,
Soltz
,
M. A.
,
Kopacz
,
M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2003
, “
Experimental Verification of the Roles of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
84
93
.
You do not currently have access to this content.