While recent literature has clearly demonstrated that an extensive personalization of the musculoskeletal models was necessary to reach high accuracy, several components of the generic models may be further investigated before defining subject-specific parameters. Among others, the choice in muscular geometry and thus the level of muscular redundancy in the model may have a noticeable influence on the predicted musculotendon and joint contact forces. In this context, the aim of this study was to investigate if the level of muscular redundancy can contribute or not to reduce inaccuracies in tibiofemoral contact forces predictions. For that, the dataset disseminated through the Sixth Grand Challenge Competition to Predict In Vivo Knee Loads was applied to a versatile 3D lower limb musculoskeletal model in which two muscular geometries (i.e., two different levels of muscular redundancy) were implemented. This dataset provides tibiofemoral implant measurements for both medial and lateral compartments and thus allows evaluation of the validity of the model predictions. The results suggest that an increase of the level of muscular redundancy corresponds to a better accuracy of total tibiofemoral contact force whatever the gait pattern investigated. However, the medial and lateral contact forces ratio and accuracy were not necessarily improved when increasing the level of muscular redundancy and may thus be attributed to other parameters such as the location of contact points. To conclude, the muscular geometry, among other components of the generic model, has a noticeable impact on joint contact forces predictions and may thus be correctly chosen even before trying to personalize the model.

References

References
1.
Chèze
,
L.
,
Moissenet
,
F.
, and
Dumas
,
R.
, “
State of the Art and Current Limits of Musculo-Skeletal Models for Clinical Applications
,”
Mov. Sport Sci.—Sci. Mot.
(in press).
2.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
2
), pp.
131
154
.
3.
Pandy
,
M. G.
, and
Andriacchi
,
T. P.
,
2010
, “
Muscle and Joint Function in Human Locomotion
,”
Annu. Rev. Biomed. Eng.
,
12
(
1
), pp.
401
433
.
4.
Gerus
,
P.
,
Sartori
,
M.
,
Besier
,
T. F.
,
Fregly
,
B. J.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
,
D'Lima
,
D. D.
, and
Lloyd
,
D. G.
,
2013
, “
Subject-Specific Knee Joint Geometry Improves Predictions of Medial Tibiofemoral Contact Forces
,”
J. Biomech.
,
46
(
16
), pp.
2778
2786
.
5.
Lenaerts
,
G.
,
De Groote
,
F.
,
Demeulenaere
,
B.
,
Mulier
,
M.
,
Van der Perre
,
G.
,
Spaepen
,
A.
, and
Jonkers
,
I.
,
2008
, “
Subject-Specific Hip Geometry Affects Predicted Hip Joint Contact Forces During Gait
,”
J. Biomech.
,
41
(
6
), pp.
1243
1252
.
6.
Lerner
,
Z. F.
,
DeMers
,
M. S.
,
Delp
,
S. L.
, and
Browning
,
R. C.
,
2015
, “
How Tibiofemoral Alignment and Contact Locations Affect Predictions of Medial and Lateral Tibiofemoral Contact Forces
,”
J. Biomech.
,
48
(
4
), pp.
644
650
.
7.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H. F. J. M.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.
8.
Dumas
,
R.
,
Moissenet
,
F.
,
Gasparutto
,
X.
, and
Chèze
,
L.
,
2012
, “
Influence of Joint Models on Lower-Limb Musculo-Tendon Forces and Three-Dimensional Joint Reaction Forces During Gait
,”
Proc. Inst. Mech. Eng. H.
,
226
(
2
), pp.
146
160
.
9.
Modenese
,
L.
,
Phillips
,
A. T. M.
, and
Bull
,
A. M. J.
,
2011
, “
An Open Source Lower Limb Model: Hip Joint Validation
,”
J. Biomech.
,
44
(
12
), pp.
2185
2193
.
10.
Cleather
,
D. J.
, and
Bull
,
A. M. J.
,
2011
, “
An Optimization-Based Simultaneous Approach to the Determination of Muscular, Ligamentous, and Joint Contact Forces Provides Insight Into Musculoligamentous Interaction
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1925
1934
.
11.
Hu
,
C.-C.
,
Lu
,
T.-W.
, and
Chen
,
S.-C.
,
2013
, “
Influence of Model Complexity and Problem Formulation on the Forces in the Knee Calculated Using Optimization Methods
,”
Biomed. Eng. Online
,
12
(
1
), p. 20.
12.
Lin
,
Y.-C.
,
Walter
,
J. P.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
Fregly
,
B. J.
,
2010
, “
Simultaneous Prediction of Muscle and Contact Forces in the Knee During Gait
,”
J. Biomech.
,
43
(
5
), pp.
945
952
.
13.
Moissenet
,
F.
,
Chèze
,
L.
, and
Dumas
,
R.
,
2014
, “
A 3D Lower Limb Musculoskeletal Model for Simultaneous Estimation of Musculo-Tendon, Joint Contact, Ligament and Bone Forces During Gait
,”
J. Biomech.
,
47
(
1
), pp.
50
58
.
14.
Valente
,
G.
,
Martelli
,
S.
,
Taddei
,
F.
,
Farinella
,
G.
, and
Viceconti
,
M.
,
2012
, “
Muscle Discretization Affects the Loading Transferred to Bones in Lower-Limb Musculoskeletal Models
,”
Proc. Inst. Mech. Eng. H.
,
226
(
2
), pp.
161
169
.
15.
Xiao
,
M.
, and
Higginson
,
J.
,
2010
, “
Sensitivity of Estimated Muscle Force in Forward Simulation of Normal Walking
,”
J. Appl. Biomech.
,
26
(
2
), pp.
142
149
.
16.
Cleather
,
D. I.
, and
Bull
,
A. M. J.
,
2010
, “
Lower-Extremity Musculoskeletal Geometry Affects the Calculation of Patellofemoral Forces in Vertical Jumping and Weightlifting
,”
Proc. Inst. Mech. Eng. H.
,
224
(
9
), pp.
1073
1083
.
17.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.
18.
Klein Horsman
,
M. D.
,
Koopman
,
H. F. J. M.
,
van der Helm
,
F. C. T.
,
Prosé
,
L. P.
, and
Veeger
,
H. E. J.
,
2007
, “
Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
2
), pp.
239
247
.
19.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads.
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.
20.
Sancisi
,
N.
, and
Parenti-Castelli
,
V.
,
2011
, “
On the Role of Ligaments in the Guidance of the Human Knee Passive Motion
,”
Euromech Colloquium 511
, Ponta Delgada, Mar. 9–11, pp.
1
9
.
21.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.
22.
Moissenet
,
F.
,
Chèze
,
L.
, and
Dumas
,
R.
,
2012
, “
Anatomical Kinematic Constraints: Consequences on Musculo-Tendon Forces and Joint Reactions
,”
Multibody Syst. Dyn.
,
28
(
1–2
), pp.
125
141
.
23.
Sancisi
,
N.
, and
Parenti-Castelli
,
V.
,
2011
, “
A New Kinematic Model of the Passive Motion of the Knee Inclusive of the Patella
,”
J. Mech. Rob.
,
3
(
4
), p.
041003
.
24.
Duprey
,
S.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2010
, “
Influence of Joint Constraints on Lower Limb Kinematics Estimation From Skin Markers Using Global Optimization
,”
J. Biomech.
,
43
(
14
), pp.
2858
2862
.
25.
D'Lima
,
D. D.
,
Steklov
,
N.
,
Fregly
,
B. J.
,
Banks
,
S. A.
, and
Colwell
,
C. W.
,
2008
, “
In Vivo Contact Stresses During Activities of Daily Living After Knee Arthroplasty
,”
J. Orthop. Res.
,
26
(
12
), pp.
1549
1555
.
26.
Moissenet
,
F.
,
Giroux
,
M.
,
Chèze
,
L.
, and
Dumas
,
R.
,
2015
, “
Validity of a Musculoskeletal Model Using Two Different Geometries for Estimating Hip Contact Forces During Normal Walking
,”
Comput. Methods Biomech. Biomed. Engin.
,
18
(
Suppl 1
), pp.
2000
2001
.
27.
Herzog
,
W.
,
Longino
,
D.
, and
Clark
,
A.
,
2003
, “
The Role of Muscles in Joint Adaptation and Degeneration
,”
Langenbecks. Arch. Surg.
,
388
(
5
), pp.
305
315
.
28.
Moissenet
,
F.
,
Chèze
,
L.
, and
Dumas
,
R.
, “
Contribution of Individual Musculo-Tendon Forces to the Axial Compression Force of the Femur During Normal Gait
,”
Mov. Sport Sci.—Sci. Mot.
(accepted).
29.
Sritharan
,
P.
,
Lin
,
Y.-C.
, and
Pandy
,
M. G.
,
2012
, “
Muscles That Do Not Cross the Knee Contribute to the Knee Adduction Moment and Tibiofemoral Compartment Loading During Gait
,”
J. Orthop. Res.
,
30
(
10
), pp.
1586
1595
.
30.
Winby
,
C. R.
,
Lloyd
,
D. G.
,
Besier
,
T. F.
, and
Kirk
,
T. B.
,
2009
, “
Muscle and External Load Contribution to Knee Joint Contact Loads During Normal Gait
,”
J. Biomech.
,
42
(
14
), pp.
2294
2300
.
31.
Raikova
,
R. T.
, and
Prilutsky
,
B. I.
,
2001
, “
Sensitivity of Predicted Muscle Forces to Parameters of the Optimization-Based Human Leg Model Revealed by Analytical and Numerical Analyses
,”
J. Biomech.
,
34
(
10
), pp.
1243
1255
.
You do not currently have access to this content.