Segment-based musculoskeletal models allow the prediction of muscle, ligament, and joint forces without making assumptions regarding joint degrees-of-freedom (DOF). The dataset published for the “Grand Challenge Competition to Predict in vivo Knee Loads” provides directly measured tibiofemoral contact forces for activities of daily living (ADL). For the Sixth Grand Challenge Competition to Predict in vivo Knee Loads, blinded results for “smooth” and “bouncy” gait trials were predicted using a customized patient-specific musculoskeletal model. For an unblinded comparison, the following modifications were made to improve the predictions: further customizations, including modifications to the knee center of rotation; reductions to the maximum allowable muscle forces to represent known loss of strength in knee arthroplasty patients; and a kinematic constraint to the hip joint to address the sensitivity of the segment-based approach to motion tracking artifact. For validation, the improved model was applied to normal gait, squat, and sit-to-stand for three subjects. Comparisons of the predictions with measured contact forces showed that segment-based musculoskeletal models using patient-specific input data can estimate tibiofemoral contact forces with root mean square errors (RMSEs) of 0.48–0.65 times body weight (BW) for normal gait trials. Comparisons between measured and predicted tibiofemoral contact forces yielded an average coefficient of determination of 0.81 and RMSEs of 0.46–1.01 times BW for squatting and 0.70–0.99 times BW for sit-to-stand tasks. This is comparable to the best validations in the literature using alternative models.

References

References
1.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
,
1981
, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
,
14
(
11
), pp.
793
801
.
2.
Bull
,
A. M.
,
Reilly
,
P.
,
Wallace
,
A. L.
,
Amis
,
A. A.
, and
Emery
,
R. J.
,
2005
, “
A Novel Technique to Measure Active Tendon Forces: Application to the Subscapularis Tendon
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
13
(
2
), pp.
145
150
.
3.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
,
1993
, “
Hip Joint Loading During Walking and Running, Measured in Two Patients
,”
J. Biomech.
,
26
(
8
), pp.
969
990
.
4.
Knarr
,
B. A.
, and
Higginson
,
J. S.
,
2015
, “
Practical Approach to Subject-Specific Estimation of Knee Joint Contact Force
,”
J. Biomech.
,
48
(
11
), pp.
2897
2902
.
5.
Kinney
,
A. L.
,
Besier
,
T. F.
,
Silder
,
A.
,
Delp
,
S. L.
,
D'Lima
,
D. D.
, and
Fregly
,
B. J.
,
2013
, “
Changes in In Vivo Knee Contact Forces Through Gait Modification
,”
J. Orthop. Res.
,
31
(
3
), pp.
434
440
.
6.
Modenese
,
L.
,
Phillips
,
A. T.
, and
Bull
,
A. M.
,
2011
, “
An Open Source Lower Limb Model: Hip Joint Validation
,”
J. Biomech.
,
44
(
12
), pp.
2185
2193
.
7.
Guess
,
T. M.
,
Stylianou
,
A. P.
, and
Kia
,
M.
,
2014
, “
Concurrent Prediction of Muscle and Tibiofemoral Contact Forces During Treadmill Gait
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021032
.
8.
Nikooyan
,
A. A.
,
Veeger
,
H. E.
,
Westerhoff
,
P.
,
Graichen
,
F.
,
Bergmann
,
G.
, and
van der Helm
,
F. C.
,
2010
, “
Validation of the Delft Shoulder and Elbow Model Using In-Vivo Glenohumeral Joint Contact Forces
,”
J. Biomech.
,
43
(
15
), pp.
3007
3014
.
9.
Mizu-Uchi
,
H.
,
Colwell
,
C. W.
, Jr.
,
Flores-Hernandez
,
C.
,
Fregly
,
B. J.
,
Matsuda
,
S.
, and
D'Lima
,
D. D.
,
2015
, “
Patient-Specific Computer Model of Dynamic Squatting After Total Knee Arthroplasty
,”
J. Arthroplasty
,
30
(
5
), pp.
870
874
.
10.
Stylianou
,
A. P.
,
Guess
,
T. M.
, and
Kia
,
M.
,
2013
, “
Multibody Muscle Driven Model of an Instrumented Prosthetic Knee During Squat and Toe Rise Motions
,”
ASME J. Biomech. Eng.
,
135
(
4
), p.
041008
.
11.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.
12.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.
13.
Donnelly
,
C. J.
,
Lloyd
,
D. G.
,
Elliott
,
B. C.
, and
Reinbolt
,
J. A.
,
2012
, “
Optimizing Whole-Body Kinematics to Minimize Valgus Knee Loading During Sidestepping: Implications for ACL Injury Risk
,”
J. Biomech.
,
45
(
8
), pp.
1491
1497
.
14.
Gerus
,
P.
,
Sartori
,
M.
,
Besier
,
T. F.
,
Fregly
,
B. J.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
,
D'Lima
,
D. D.
, and
Lloyd
,
D. G.
,
2013
, “
Subject-Specific Knee Joint Geometry Improves Predictions of Medial Tibiofemoral Contact Forces
,”
J. Biomech.
,
46
(
16
), pp.
2778
2786
.
15.
Uvehammer
,
J.
,
Karrholm
,
J.
, and
Brandsson
,
S.
,
2000
, “
In Vivo Kinematics of Total Knee Arthroplasty. Concave Versus Posterior-Stabilised Tibial Joint Surface
,”
J. Bone Jt. Surg. Br.
,
82-B
(
4
), pp.
499
505
.
16.
Cleather
,
D. J.
, and
Bull
,
A. M. J.
,
2015
, “
The Development of a Segment-Based Musculoskeletal Model of the Lower Limb: Introducing FreeBody
,”
R. Soc. Open Sci.
,
2
(
6
), p.
140449
.
17.
Dumas
,
R.
,
Aissaoui
,
R.
, and
de Guise
,
J. A.
,
2004
, “
A 3D Generic Inverse Dynamic Method Using Wrench Notation and Quaternion Algebra
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
3
), pp.
159
166
.
18.
Cleather
,
D. J.
, and
Bull
,
A. M.
,
2011
, “
An Optimization-Based Simultaneous Approach to the Determination of Muscular, Ligamentous, and Joint Contact Forces Provides Insight Into Musculoligamentous Interaction
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1925
1934
.
19.
Cleather
,
D. J.
,
Goodwin
,
J. E.
, and
Bull
,
A. M.
,
2011
, “
An Optimization Approach to Inverse Dynamics Provides Insight as to the Function of the Biarticular Muscles During Vertical Jumping
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
147
160
.
20.
Kirking
,
B.
,
Krevolin
,
J.
,
Townsend
,
C.
,
Colwell
,
C. W.
, Jr.
, and
D'Lima
,
D. D.
,
2006
, “
A Multiaxial Force-Sensing Implantable Tibial Prosthesis
,”
J. Biomech.
,
39
(
9
), pp.
1744
1751
.
21.
Kinney
,
A. L.
,
Besier
,
T. F.
,
D'Lima
,
D. D.
, and
Fregly
,
B. J.
,
2013
, “
Update on Grand Challenge Competition to Predict In Vivo Knee Loads
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021012
.
22.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.
23.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Model. Pract. Theory.
,
14
(
8
), pp.
1100
1111
.
24.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.
25.
Cleather
,
D. J.
, and
Bull
,
A. M.
,
2010
, “
Influence of Inverse Dynamics Methods on the Calculation of Inter-Segmental Moments in Vertical Jumping and Weightlifting
,”
Biomed. Eng. Online
,
9
, p. 74.
26.
Dumas
,
R.
,
Moissenet
,
F.
,
Gasparutto
,
X.
, and
Cheze
,
L.
,
2012
, “
Influence of Joint Models on Lower-Limb Musculo-Tendon Forces and Three-Dimensional Joint Reaction Forces During Gait
,”
Proc. Inst. Mech. Eng. H
,
226
(
2
), pp.
146
160
.
27.
Klein Horsman
,
M. D.
,
Koopman
,
H. F.
,
van der Helm
,
F. C.
,
Prose
,
L. P.
, and
Veeger
,
H. E.
,
2007
, “
Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity
,”
Clin. Biomech.
,
22
(
2
), pp.
239
247
.
28.
Yamaguchi
,
G. T.
,
2001
,
Dynamic Modeling of Musculoskeletal Motion: A Vectorized Approach for Biomechanical Analysis in Three Dimensions
,
Springer
,
New York
.
29.
Soderkvist
,
I.
, and
Wedin
,
P. A.
,
1993
, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
,
26
(
12
), pp.
1473
1477
.
30.
Kim
,
Y. H.
,
Park
,
W. M.
, and
Phuong
,
B. T. T.
,
2010
, “
Effect of Joint Center Location on In-Vivo Joint Contact Forces During Walking
,”
ASME
Paper No. SBC2010-19353.
31.
Hast
,
M. W.
, and
Piazza
,
S. J.
,
2013
, “
Dual-Joint Modeling for Estimation of Total Knee Replacement Contact Forces During Locomotion
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021013
.
32.
Manal
,
K.
, and
Buchanan
,
T. S.
,
2012
, “
Predictions of Condylar Contact During Normal and Medial Thrust Gait
,”
ASME
Paper No. SBC2012-80560.
33.
Knowlton
,
C. B.
,
Wimmer
,
M. A.
, and
Lundberg
,
H. J.
,
2012
, “
Grand Challenge Competition: A Parametric Numerical Model to Predict In Vivo Medial and Lateral Knee Forces in Walking Gaits
,”
ASME
Paper No. SBC2012-80581.
34.
Thelen
,
D. G.
,
Won
,
C. K.
, and
Schmitz
,
A. M.
,
2014
, “
Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021033
.
35.
Chen
,
Z.
,
Zhang
,
X.
,
Ardestani
,
M. M.
,
Wang
,
L.
,
Liu
,
Y.
,
Lian
,
Q.
,
He
,
J.
,
Li
,
D.
, and
Jin
,
Z.
,
2014
, “
Prediction of In Vivo Joint Mechanics of an Artificial Knee Implant Using Rigid Multi-Body Dynamics With Elastic Contacts
,”
Proc. Inst. Mech. Eng. H
,
228
(
6
), pp.
564
575
.
36.
Southgate
,
D. F.
,
Cleather
,
D. J.
,
Weinert-Aplin
,
R. A.
, and
Bull
,
A. M.
,
2012
, “
The Sensitivity of a Lower Limb Model to Axial Rotation Offsets and Muscle Bounds at the Knee
,”
Proc. Inst. Mech. Eng. H
,
226
(
9
), pp.
660
669
.
37.
Narici
,
M. V.
, and
Maganaris
,
C. N.
,
2006
, “
Adaptability of Elderly Human Muscles and Tendons to Increased Loading
,”
J. Anat.
,
208
(
4
), pp.
433
443
.
38.
Samuel
,
D.
, and
Rowe
,
P. J.
,
2009
, “
Effect of Ageing on Isometric Strength Through Joint Range at Knee and Hip Joints in Three Age Groups of Older Adults
,”
Gerontology
,
55
(
6
), pp.
621
629
.
39.
D'Lima
,
D. D.
,
Townsend
,
C. P.
,
Arms
,
S. W.
,
Morris
,
B. A.
, and
Colwell
,
C. W.
, Jr.
,
2005
, “
An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces
,”
J. Biomech.
,
38
(
2
), pp.
299
304
.
40.
Silva
,
M.
,
Shepherd
,
E. F.
,
Jackson
,
W. O.
,
Pratt
,
J. A.
,
McClung
,
C. D.
, and
Schmalzried
,
T. P.
,
2003
, “
Knee Strength After Total Knee Arthroplasty
,”
J. Arthroplasty
,
18
(
5
), pp.
605
611
.
41.
Arnold
,
E. M.
,
Hamner
,
S. R.
,
Seth
,
A.
,
Millard
,
M.
, and
Delp
,
S. L.
,
2013
, “
How Muscle Fiber Lengths and Velocities Affect Muscle Force Generation as Humans Walk and Run at Different Speeds
,”
J. Exp. Biol.
,
216
(
11
), pp.
2150
2160
.
42.
Giroux
,
M.
,
Moissenet
,
F.
, and
Dumas
,
R.
,
2013
, “
EMG-Based Validation of Musculo-Skeletal Models for Gait Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
5
), pp.
152
154
.
43.
Moissenet
,
F.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2014
, “
A 3D Lower Limb Musculoskeletal Model for Simultaneous Estimation of Musculo-Tendon, Joint Contact, Ligament and Bone Forces During Gait
,”
J. Biomech.
,
47
(
1
), pp.
50
58
.
44.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.
45.
DeMers
,
M. S.
,
Pal
,
S.
, and
Delp
,
S. L.
,
2014
, “
Changes in Tibiofemoral Forces Due to Variations in Muscle Activity During Walking
,”
J. Orthop. Res.
,
32
(
6
), pp.
769
776
.
46.
Akiyama
,
K.
,
Sakai
,
T.
,
Koyanagi
,
J.
,
Yoshikawa
,
H.
, and
Sugamoto
,
K.
,
2011
, “
Evaluation of Translation in the Normal and Dysplastic Hip Using Three-Dimensional Magnetic Resonance Imaging and Voxel-Based Registration
,”
Osteoarth. Cartil.
,
19
(
6
), pp.
700
710
.
47.
Gilles
,
B.
,
Christophe
,
F. K.
,
Magnenat-Thalmann
,
N.
,
Becker
,
C. D.
,
Duc
,
S. R.
,
Menetrey
,
J.
, and
Hoffmeyer
,
P.
,
2009
, “
MRI-Based Assessment of Hip Joint Translations
,”
J. Biomech.
,
42
(
9
), pp.
1201
1205
.
48.
Shelburne
,
K. B.
, and
Pandy
,
M. G.
,
2002
, “
A Dynamic Model of the Knee and Lower Limb for Simulating Rising Movements
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
2
), pp.
149
159
.
49.
Smith
,
S. M.
,
Cockburn
,
R. A.
,
Hemmerich
,
A.
,
Li
,
R. M.
, and
Wyss
,
U. P.
,
2008
, “
Tibiofemoral Joint Contact Forces and Knee Kinematics During Squatting
,”
Gait Posture
,
27
(
3
), pp.
376
386
.
50.
Dahlkvist
,
N. J.
,
Mayo
,
P.
, and
Seedhom
,
B. B.
,
1982
, “
Forces During Squatting and Rising From a Deep Squat
,”
Eng. Med.
,
11
(
2
), pp.
69
76
.
51.
Handsfield
,
G. G.
,
Meyer
,
C. H.
,
Hart
,
J. M.
,
Abel
,
M. F.
, and
Blemker
,
S. S.
,
2014
, “
Relationships of 35 Lower Limb Muscles to Height and Body Mass Quantified Using MRI
,”
J. Biomech.
,
47
(
3
), pp.
631
638
.
You do not currently have access to this content.