The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial–lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and −23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.

References

References
1.
Fang
,
D. M.
,
Ritter
,
M. A.
, and
Davis
,
K. E.
,
2009
, “
Coronal Alignment in Total Knee Arthroplasty: Just How Important is It?
J. Arthroplasty
,
24
(
Suppl. 6
), pp.
39
43
.
2.
Insall
,
J.
,
1985
, “
Correction of Arthritic Deformities of the Knee
,”
Arthritis and Allied Conditions: A Textbook of Rheumatology
,
10th ed.
,
Lea and Febiger
,
Philadelphia, PA
, pp.
771
784
.
3.
Sambatakakis
,
A.
,
Wilton
,
T.
, and
Newton
,
G.
,
1991
, “
Radiographic Sign of Persistent Soft-Tissue Imbalance After Knee Replacement
,”
J. Bone Joint Surg., Br.
,
73
(
5
), pp.
751
756
.
4.
Freeman
,
M.
,
Todd
,
R.
,
Bamert
,
P.
, and
Day
,
W.
,
1978
, “
ICLH Arthroplasty of the Knee: 1968–1977
,”
J. Bone Joint Surg., Br.
,
60
(
3
), pp.
339
344
.
5.
Insall
,
J. N.
,
Binazzi
,
R.
,
Soudry
,
M.
, and
Mestriner
,
L. A.
,
1985
, “
Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
192
, pp.
13
22
.
6.
Wasielewski
,
R. C.
,
Galante
,
J. O.
,
Leighty
,
R. M.
,
Natarajan
,
R. N.
, and
Rosenberg
,
A. G.
,
1994
, “
Wear Patterns on Retrieved Polyethylene Tibial Inserts and Their Relationship to Technical Considerations During Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
299
, pp.
31
43
.
7.
Windsor
,
R. E.
,
Scuderi
,
G. R.
,
Moran
,
M. C.
, and
Insall
,
J. N.
,
1989
, “
Mechanisms of Failure of the Femoral and Tibial Components in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
248
, pp.
15
20
.
8.
Lotke
,
P. A.
, and
Ecker
,
M. L.
,
1977
, “
Influence of Positioning of Prosthesis in Total Knee Replacement
,”
J. Bone Joint Surg.
,
59
(
1
), pp.
77
79
.
9.
Karachalios
,
T.
,
Sarangi
,
P.
, and
Newman
,
J.
,
1994
, “
Severe Varus and Valgus Deformities Treated by Total Knee Arthroplasty
,”
J. Bone Joint Surg., Br.
,
76
(
6
), pp.
938
942
.
10.
Teeny
,
S. M.
,
Krackow
,
K. A.
,
Hungerford
,
D. S.
, and
Jones
,
M.
,
1991
, “
Primary Total Knee Arthroplasty in Patients With Severe Varus Deformity. A Comparative Study
,”
Clin. Orthop. Relat. Res.
,
273
, pp.
19
31
.
11.
Dorr
,
L. D.
, and
Boiardo
,
R. A.
,
1986
, “
Technical Considerations in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
205
, pp.
5
11
.
12.
Matsuda
,
S.
,
Miura
,
H.
,
Nagamine
,
R.
,
Urabe
,
K.
,
Harimaya
,
K.
,
Matsunobu
,
T.
, and
Iwamoto
,
Y.
,
1999
, “
Changes in Knee Alignment After Total Knee Arthroplasty
,”
J. Arthroplasty
,
14
(
5
), pp.
566
570
.
13.
Krackow
,
K. A.
, and
Mihalko
,
W. M.
,
1998
, “
The Effect of Medial Release on Flexion and Extension Gaps in Cadaveric Knees: Implications for Soft-Tissue Balancing in Total Knee Arthroplasty
,”
Am. J. Knee Surg.
,
12
(
4
), pp.
222
228
.
14.
Whiteside
,
L. A.
,
Saeki
,
K.
, and
Mihalko
,
W. M.
,
2000
, “
Functional Medial Ligament Balancing in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
380
, pp.
45
57
.
15.
Yagishita
,
K.
,
Muneta
,
T.
, and
Ikeda
,
H.
,
2003
, “
Step-by-Step Measurements of Soft Tissue Balancing During Total Knee Arthroplasty for Patients With Varus Knees
,”
J. Arthroplasty
,
18
(
3
), pp.
313
320
.
16.
Scott
,
W. N.
,
2011
,
Insall & Scott Surgery of the Knee
,
Elsevier Health Sciences
,
Philadelphia, PA
.
17.
Mihalko
,
W. M.
,
Saleh
,
K. J.
,
Krackow
,
K. A.
, and
Whiteside
,
L. A.
,
2009
, “
Soft-Tissue Balancing During Total Knee Arthroplasty in the Varus Knee
,”
J. Am. Acad. Orthop. Surg.
,
17
(
12
), pp.
766
774
.
18.
Kinney
,
A. L.
,
Besier
,
T. F.
,
D'Lima
,
D. D.
, and
Fregly
,
B. J.
,
2013
, “
Update on Grand Challenge Competition to Predict In Vivo Knee Loads
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021012
.
19.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.
20.
Kim
,
Y.-H.
,
Park
,
W.-M.
, and
Phuong
,
B. T. T.
,
2010
, “
Effect of Joint Center Location on In-Vivo Joint Contact Forces During Walking
,”
ASME
Paper No. SBC2010-19353.
21.
Manal
,
K.
, and
Buchanan
,
T. S.
,
2013
, “
An Electromyogram-Driven Musculoskeletal Model of the Knee to Predict In Vivo Joint Contact Forces During Normal and Novel Gait Patterns
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021014
.
22.
Guess
,
T. M.
,
Stylianou
,
A. P.
, and
Kia
,
M.
,
2014
, “
Concurrent Prediction of Muscle and Tibiofemoral Contact Forces During Treadmill Gait
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021032
.
23.
Thelen
,
D. G.
,
Choi
,
K. W.
, and
Schmitz
,
A. M.
,
2014
, “
Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021033
.
24.
Hast
,
M. W.
, and
Piazza
,
S. J.
,
2013
, “
Dual-Joint Modeling for Estimation of Total Knee Replacement Contact Forces During Locomotion
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021013
.
25.
Anderson
,
A. E.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Verification, Validation and Sensitivity Studies in Computational Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
3
), pp.
171
184
.
26.
Chandrashekar
,
N.
,
Mansouri
,
H.
,
Slauterbeck
,
J.
, and
Hashemi
,
J.
,
2006
, “
Sex-Based Differences in the Tensile Properties of the Human Anterior Cruciate Ligament
,”
J. Biomech.
,
39
(
16
), pp.
2943
2950
.
27.
Claes
,
L.
,
Beyer
,
A.
,
Krischke
,
W.
, and
Schmid
,
R.
,
1987
, “
Biomechanical Properties of Collateral and Cruciate Ligaments. Biomechanics of Human Knee Ligaments
,”
Proceedings of the European Society of Biomechanics
, pp.
22
.
28.
Noyes
,
F. R.
, and
Grood
,
E. S.
,
1976
, “
The Strength of the Anterior Cruciate Ligament in Humans and Rhesus Monkeys
,”
J. Bone Joint Surg.
,
58
(
8
), pp.
1074
1082
.
29.
Prietto
,
M.
,
Bain
,
J.
,
Stonebrook
,
S.
, and
Settlage
,
R.
,
1988
, “
Tensile Strength of the Human Posterior Cruciate Ligament (PCL)
,”
Trans. Orthop. Res. Soc.
,
13
(
195
), pp.
736
745
.
30.
Trent
,
P. S.
,
Walker
,
P. S.
, and
Wolf
,
B.
,
1976
, “
Ligament Length Patterns, Strength, and Rotational Axes of the Knee Joint
,”
Clin. Orthop. Relat. Res.
,
117
, pp.
263
270
.
31.
Woo
,
S. L.-Y.
,
Hollis
,
J. M.
,
Adams
,
D. J.
,
Lyon
,
R. M.
, and
Takai
,
S.
,
1991
, “
Tensile Properties of the Human Femur–Anterior Cruciate Ligament–Tibia Complex. The Effects of Specimen Age and Orientation
,”
Am. J. Sports Med.
,
19
(
3
), pp.
217
225
.
32.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.
33.
Meyer
,
A. J.
,
D'Lima
,
D. D.
,
Banks
,
S. A.
,
Coburn
,
J.
,
Harman
,
M.
,
Mikashima
,
Y.
, and
Fregly
,
B. J.
,
2011
, “
Evaluation of Regression Equations for Medial and Lateral Contact Force From Instrumented Knee Implant Data
,”
ASME
Paper No. SBC2011-53938.
34.
Smith
,
C. R.
,
Lenhart
,
R. L.
,
Kaiser
,
J.
,
Vignos
,
M. F.
, and
Thelen
,
D. G.
, “
Influence of Ligament Properties on Tibiofemoral Mechanics in Walking
,”
J. Knee Surg.
(in press).
35.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1991
, “
Ligament–Bone Interaction in a Three-Dimensional Model of the Knee
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
263
269
.
36.
Shelburne
,
K. B.
,
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Torry
,
M. R.
,
2004
, “
Pattern of Anterior Cruciate Ligament Force in Normal Walking
,”
J. Biomech.
,
37
(
6
), pp.
797
805
.
37.
Shin
,
C. S.
,
Chaudhari
,
A. M.
, and
Andriacchi
,
T. P.
,
2007
, “
The Influence of Deceleration Forces on ACL Strain During Single-Leg Landing: A Simulation Study
,”
J. Biomech.
,
40
(
5
), pp.
1145
1152
.
38.
Amis
,
A.
,
Firer
,
P.
,
Mountney
,
J.
,
Senavongse
,
W.
, and
Thomas
,
N.
,
2003
, “
Anatomy and Biomechanics of the Medial Patellofemoral Ligament
,”
Knee
,
10
(
3
), pp.
215
220
.
39.
Amis
,
A.
,
Gupte
,
C.
,
Bull
,
A.
, and
Edwards
,
A.
,
2006
, “
Anatomy of the Posterior Cruciate Ligament and the Meniscofemoral Ligaments
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
14
(
3
), pp.
257
263
.
40.
Basso
,
O.
,
Johnson
,
D.
, and
Amis
,
A.
,
2001
, “
The Anatomy of the Patellar Tendon
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
9
(
1
), pp.
2
5
.
41.
Edwards
,
A.
,
Bull
,
A. M.
, and
Amis
,
A. A.
,
2007
, “
The Attachments of the Fiber Bundles of the Posterior Cruciate Ligament: An Anatomic Study
,”
Arthroscopy
,
23
(
3
), pp.
284
290
.
42.
Ferretti
,
M.
,
Ekdahl
,
M.
,
Shen
,
W.
, and
Fu
,
F. H.
,
2007
, “
Osseous Landmarks of the Femoral Attachment of the Anterior Cruciate Ligament: An Anatomic Study
,”
Arthroscopy
,
23
(
11
), pp.
1218
1225
.
43.
Giron
,
F.
,
Cuomo
,
P.
,
Aglietti
,
P.
,
Bull
,
A. M.
, and
Amis
,
A. A.
,
2006
, “
Femoral Attachment of the Anterior Cruciate Ligament
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
14
(
3
), pp.
250
256
.
44.
Kopf
,
S.
,
Musahl
,
V.
,
Tashman
,
S.
,
Szczodry
,
M.
,
Shen
,
W.
, and
Fu
,
F. H.
,
2009
, “
A Systematic Review of the Femoral Origin and Tibial Insertion Morphology of the ACL
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
17
(
3
), pp.
213
219
.
45.
LaPrade
,
R. F.
,
Ly
,
T. V.
,
Wentorf
,
F. A.
, and
Engebretsen
,
L.
,
2003
, “
The Posterolateral Attachments of the Knee a Qualitative and Quantitative Morphologic Analysis of the Fibular Collateral Ligament, Popliteus Tendon, Popliteofibular Ligament, and Lateral Gastrocnemius Tendon
,”
Am. J. Sports Med.
,
31
(
6
), pp.
854
860
.
46.
Liu
,
F.
,
Yue
,
B.
,
Gadikota
,
H. R.
,
Kozanek
,
M.
,
Liu
,
W.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2010
, “
Morphology of the Medial Collateral Ligament of the Knee
,”
J. Orthop. Surg. Res.
,
5
(
1
), pp.
1
8
.
47.
Meister
,
B. R.
,
Michael
,
S. P.
,
Moyer
,
R. A.
,
Kelly
,
J. D.
, and
Schneck
,
C. D.
,
2000
, “
Anatomy and Kinematics of the Lateral Collateral Ligament of the Knee
,”
Am. J. Sports Med.
,
28
(
6
), pp.
869
878
.
48.
Nomura
,
E.
,
Inoue
,
M.
, and
Osada
,
N.
,
2005
, “
Anatomical Analysis of the Medial Patellofemoral Ligament of the Knee, Especially the Femoral Attachment
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
13
(
7
), pp.
510
515
.
49.
Rachmat
,
H.
,
Janssen
,
D.
,
Zevenbergen
,
W.
,
Verkerke
,
G.
,
Diercks
,
R.
, and
Verdonschot
,
N.
,
2014
, “
Generating Finite Element Models of the Knee: How Accurately Can We Determine Ligament Attachment Sites From MRI Scans?
Med. Eng. Phys.
,
36
(
6
), pp.
701
707
.
50.
Robinson
,
J.
,
Sanchez-Ballester
,
J.
,
Bull
,
A.
,
de
,
WM
,
Thomas
,
R.
, and
Amis
,
A.
,
2004
, “
The Posteromedial Corner Revisited. An Anatomical Description of the Passive Restraining Structures of the Medial Aspect of the Human Knee
,”
J. Bone Joint Surg., Br.
,
86
(
5
), pp.
674
681
.
51.
Sugita
,
T.
, and
Amis
,
A. A.
,
2001
, “
Anatomic and Biomechanical Study of the Lateral Collateral and Popliteofibular Ligaments
,”
Am. J. Sports Med.
,
29
(
4
), pp.
466
472
.
52.
Wijdicks
,
C. A.
,
Griffith
,
C. J.
,
LaPrade
,
R. F.
,
Johansen
,
S.
,
Sunderland
,
A.
,
Arendt
,
E. A.
, and
Engebretsen
,
L.
,
2009
, “
Radiographic Identification of the Primary Medial Knee Structures
,”
J. Bone Joint Surg.
,
91
(
3
), pp.
521
529
.
53.
Vignos
,
M. F.
,
Smith
,
C. R.
, and
Thelen
,
D. G.
,
2015
, “
Automated Method for Discretizing Ligaments in Musculoskeletal Simulation Models
,”
13th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering
(
CMBBE
),
Montreal, QC
,
Canada
, Sept. 1–5.
54.
Bei
,
Y.
, and
Fregly
,
B. J.
,
2004
, “
Multibody Dynamic Simulation of Knee Contact Mechanics
,”
Med. Eng. Phys.
,
26
(
9
), pp.
777
789
.
55.
Kurtz
,
S.
,
Jewett
,
C.
,
Bergström
,
J.
,
Foulds
,
J.
, and
Edidin
,
A.
,
2002
, “
Miniature Specimen Shear Punch Test for UHMWPE Used in Total Joint Replacements
,”
Biomaterials
,
23
(
9
), pp.
1907
1919
.
56.
Bartel
,
D.
,
Rawlinson
,
J.
,
Burstein
,
A.
,
Ranawat
,
C.
, and
Flynn
,
W.
, Jr
.,
1995
, “
Stresses in Polyethylene Components of Contemporary Total Knee Replacements
,”
Clin. Orthop. Relat. Res.
,
317
, pp.
76
82
.
57.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.
58.
Jeffery
,
R. S.
,
Morris
,
R. W.
, and
Denham
,
R. A.
,
1991
, “
Coronal Alignment After Total Knee Replacement
,”
J. Bone Joint Surg., Br.
,
73
(
5
), pp.
709
714
.
59.
Delp
,
S. L.
, and
Loan
,
J. P.
,
2000
, “
A Computational Framework for Simulating and Analyzing Human and Animal Movement
,”
Comput. Sci. Eng.
,
2
(
5
), pp.
46
55
.
60.
Happee
,
R.
,
1994
, “
Inverse Dynamic Optimization Including Muscular Dynamics: A New Simulation Method Applied to Goal Directed Movements
,”
J. Biomech.
,
27
(
7
), pp.
953
960
.
61.
Lenhart
,
R. L.
,
Kaiser
,
J.
,
Smith
,
C. R.
, and
Thelen
,
D. G.
,
2015
, “
Prediction and Validation of Load-Dependent Behavior of the Tibiofemoral and Patellofemoral Joints During Movement
,”
Ann. Biomed. Eng.
,
43
(
11
), pp.
2675
2685
.
62.
Baldwin
,
M. A.
,
Laz
,
P. J.
,
Stowe
,
J. Q.
, and
Rullkoetter
,
P. J.
,
2009
, “
Efficient Probabilistic Representation of Tibiofemoral Soft Tissue Constraint
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
6
), pp.
651
659
.
63.
Reinders
,
J.
,
Sonntag
,
R.
,
Vot
,
L.
,
Gibney
,
C.
,
Nowack
,
M.
, and
Kretzer
,
J. P.
,
2015
, “
Wear Testing of Moderate Activities of Daily Living Using In Vivo Measured Knee Joint Loading
,”
PloS One
,
10
(
3
), p.
e0123155
.
64.
Wimmer
,
M.
,
Knowlton
,
C.
,
Pourzal
,
R.
,
McEwen
,
P.
, and
Andriacchi
,
T.
,
2013
, “
Clinical TKA Wear Rates and Their Association With Gait Parameters
,”
Bone Joint J. Orthop. Proc. Suppl.
,
95
(
Suppl. 34
), pp.
587
.
65.
Abdel-Jaber
,
S.
,
Belvedere
,
C.
,
Leardini
,
A.
, and
Affatato
,
S.
,
2015
, “
Wear Simulation of Total Knee Prostheses Using Load and Kinematics Waveforms From Stair Climbing
,”
J. Biomech.
,
48
(
14
), pp.
3830
3836
.
66.
Babazadeh
,
S.
,
Stoney
,
J. D.
,
Lim
,
K.
, and
Choong
,
P. F.
,
2009
, “
The Relevance of Ligament Balancing in Total Knee Arthroplasty: How Important is It? A Systematic Review of the Literature
,”
Orthop. Rev.
,
1
(
2
), p.
e26
.
67.
Fregly
,
B. J.
,
Sawyer
,
W. G.
,
Harman
,
M. K.
, and
Banks
,
S. A.
,
2005
, “
Computational Wear Prediction of a Total Knee Replacement From In Vivo Kinematics
,”
J. Biomech.
,
38
(
2
), pp.
305
314
.
68.
Lerner
,
Z. F.
,
DeMers
,
M. S.
,
Delp
,
S. L.
, and
Browning
,
R. C.
,
2015
, “
How Tibiofemoral Alignment and Contact Locations Affect Predictions of Medial and Lateral Tibiofemoral Contact Forces
,”
J. Biomech.
,
48
(
4
), pp.
644
650
.
69.
Chen
,
Z.
,
Wang
,
L.
,
Liu
,
Y.
,
He
,
J.
,
Lian
,
Q.
,
Li
,
D.
, and
Jin
,
Z.
,
2015
, “
Effect of Component Mal-Rotation on Knee Loading in Total Knee Arthroplasty Using Multi-Body Dynamics Modeling Under a Simulated Walking Gait
,”
J. Orthop. Res.
,
33
(
9
), pp.
1287
1296
.
70.
Gerus
,
P.
,
Sartori
,
M.
,
Besier
,
T. F.
,
Fregly
,
B. J.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
,
D'Lima
,
D. D.
, and
Lloyd
,
D. G.
,
2013
, “
Subject-Specific Knee Joint Geometry Improves Predictions of Medial Tibiofemoral Contact Forces
,”
J. Biomech.
,
46
(
16
), pp.
2778
2786
.
71.
Srivastava
,
A.
,
Lee
,
G. Y.
,
Steklov
,
N.
,
Colwell
,
C. W.
, Jr.
,
Ezzet
,
K. A.
, and
D'Lima
,
D. D.
,
2012
, “
Effect of Tibial Component Varus on Wear in Total Knee Arthroplasty
,”
Knee
,
19
(
5
), pp.
560
563
.
72.
Ritter
,
M. A.
,
Faris
,
P. M.
,
Keating
,
E. M.
, and
Meding
,
J. B.
,
1994
, “
Postoperative Alignment of Total Knee Replacement Its Effect on Survival
,”
Clin. Orthop. Relat. Res.
,
299
, pp.
153
156
.
73.
Feng
,
E. L.
,
Stulberg
,
S. D.
, and
Wixson
,
R. L.
,
1994
, “
Progressive Subluxation and Polyethylene Wear in Total Knee Replacements With Flat Articular Surfaces
,”
Clin. Orthop. Relat. Res.
,
299
, pp.
60
71
.
74.
D'Lima
,
D. D.
,
Hermida
,
J. C.
,
Chen
,
P. C.
, and
Colwell
,
C. W.
, Jr.
,
2001
, “
Polyethylene Wear and Variations in Knee Kinematics
,”
Clin. Orthop. Relat. Res.
,
392
, pp.
124
130
.
75.
Hernigou
,
P.
, and
Deschamps
,
G.
,
2004
, “
Alignment Influences Wear in the Knee After Medial Unicompartmental Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
423
, pp.
161
165
.
76.
Werner
,
F. W.
,
Ayers
,
D. C.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2005
, “
The Effect of Valgus/Varus Malalignment on Load Distribution in Total Knee Replacements
,”
J. Biomech.
,
38
(
2
), pp.
349
355
.
77.
Crottet
,
D.
,
Kowal
,
J.
,
Sarfert
,
S. A.
,
Maeder
,
T.
,
Bleuler
,
H.
,
Nolte
,
L.-P.
, and
Dürselen
,
L.
,
2007
, “
Ligament Balancing in TKA: Evaluation of a Force-Sensing Device and the Influence of Patellar Eversion and Ligament Release
,”
J. Biomech.
,
40
(
8
), pp.
1709
1715
.
78.
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Seth
,
A.
,
Rajagopal
,
A.
, and
Delp
,
S. L.
,
2015
, “
Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020905
.
79.
Halloran
,
J. P.
,
Easley
,
S. K.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2005
, “
Comparison of Deformable and Elastic Foundation Finite Element Simulations for Predicting Knee Replacement Mechanics
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
813
818
.
80.
Scheys
,
L.
,
Loeckx
,
D.
,
Spaepen
,
A.
,
Suetens
,
P.
, and
Jonkers
,
I.
,
2009
, “
Atlas-Based Non-Rigid Image Registration to Automatically Define Line-of-Action Muscle Models: A Validation Study
,”
J. Biomech.
,
42
(
5
), pp.
565
572
.
81.
Blemker
,
S. S.
,
Asakawa
,
D. S.
,
Gold
,
G. E.
, and
Delp
,
S. L.
,
2007
, “
Image-Based Musculoskeletal Modeling: Applications, Advances, and Future Opportunities
,”
J. Magn. Reson. Imaging
,
25
(
2
), pp.
441
451
.
82.
Valente
,
G.
,
Pitto
,
L.
,
Testi
,
D.
,
Seth
,
A.
,
Delp
,
S. L.
,
Stagni
,
R.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2014
, “
Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?
PLoS One
,
9
(
11
), p.
e112625
.
83.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.
84.
Millard
,
M.
,
Uchida
,
T.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021005
.
85.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.
86.
Laz
,
P.
, and
Browne
,
M.
,
2010
, “
A Review of Probabilistic Analysis in Orthopaedic Biomechanics
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
8
), pp.
927
943
.
You do not currently have access to this content.