Joint contact forces measured with instrumented knee implants have not only revealed general patterns of joint loading but also showed individual variations that could be due to differences in anatomy and joint kinematics. Musculoskeletal human models for dynamic simulation have been utilized to understand body kinetics including joint moments, muscle tension, and knee contact forces. The objectives of this study were to develop a knee contact model which can predict knee contact forces using an inverse dynamics-based optimization solver and to investigate the effect of joint constraints on knee contact force prediction. A knee contact model was developed to include 32 reaction force elements on the surface of a tibial insert of a total knee replacement (TKR), which was embedded in a full-body musculoskeletal model. Various external measurements including motion data and external force data during walking trials of a subject with an instrumented knee implant were provided from the Sixth Grand Challenge Competition to Predict in vivo Knee Loads. Knee contact forces in the medial and lateral portions of the instrumented knee implant were also provided for the same walking trials. A knee contact model with a hinge joint and normal alignment could predict knee contact forces with root mean square errors (RMSEs) of 165 N and 288 N for the medial and lateral portions of the knee, respectively, and coefficients of determination (R2) of 0.70 and −0.63. When the degrees-of-freedom (DOF) of the knee and locations of leg markers were adjusted to account for the valgus lower-limb alignment of the subject, RMSE values improved to 144 N and 179 N, and R2 values improved to 0.77 and 0.37, respectively. The proposed knee contact model with subject-specific joint model could predict in vivo knee contact forces with reasonable accuracy. This model may contribute to the development and improvement of knee arthroplasty.

References

References
1.
Hewett
,
T. E.
,
Myer
,
G. D.
,
Ford
,
K. R.
,
Heidt
,
R. S.
,
Colosimo
,
A. J.
,
McLean
,
S. G.
, and
Succop
,
P.
,
2005
, “
Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes a Prospective Study
,”
Am. J. Sports Med.
,
33
(
4
), pp.
492
501
.
2.
Andriacchi
,
T. P.
,
Mündermann
,
A.
,
Smith
,
R. L.
,
Alexander
,
E. J.
,
Dyrby
,
C. O.
, and
Koo
,
S.
,
2004
. “
A Framework for the In Vivo Pathomechanics of Osteoarthritis at the Knee
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
447
457
.
3.
Wimmer
,
M. A.
, and
Andriacchi
,
T. P.
,
1997
, “
Tractive Forces During Rolling Motion of the Knee: Implications for Wear in Total Knee Replacement
,”
J. Biomech.
,
30
(
2
), pp.
131
137
.
4.
Kellett
,
C. F.
,
Short
,
A.
,
Price
,
A.
,
Gill
,
H. S.
, and
Murray
,
D. W.
,
2004
, “
In Vivo Measurement of Total Knee Replacement Wear
,”
Knee
,
11
(
3
), pp.
183
187
.
5.
Walter
,
J. P.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, and
Fregly
,
B. J.
,
2010
, “
Decreased Knee Adduction Moment Does Not Guarantee Decreased Medial Contact Force during Gait
,”
J. Orthop. Res.
,
28
(
10
), pp.
1348
1354
.
6.
Bei
,
Y.
, and
Fregly
,
B. J.
,
2004
, “
Multibody Dynamic Simulation of Knee Contact Mechanics
,”
Med. Eng. Phys.
,
26
(
9
), pp.
777
789
.
7.
Banks
,
S. A.
,
Markovich
,
G. D.
, and
Hodge
,
W. A.
,
1997
, “
In Vivo Kinematics of Cruciate-Retaining and -Substituting Knee Arthroplasties
,”
J. Arthroplasty
,
12
(
3
), pp.
297
304
.
8.
D'Lima
,
D. D.
,
Steklov
,
N.
,
Patil
,
S.
, and
Colwell
,
C. W.
, Jr.
,
2008
, “
The Mark Coventry Award: In Vivo Knee Forces During Recreation and Exercise After Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
466
(
11
), pp.
2605
2611
.
9.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
10.
Damm
,
P.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Bender
,
A.
, and
Bergmann
,
G.
,
2010
, “
Total Hip Joint Prosthesis for In Vivo Measurement of Forces and Moments
,”
Med. Eng. Phys.
,
32
(
1
), pp.
95
100
.
11.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
,
1999
, “
New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
,
24
(
8
), pp.
755
762
.
12.
Sato
,
K.
,
Kikuchi
,
S.
, and
Yonezawa
,
T.
,
1999
, “
In Vivo Intradiscal Pressure Measurement in Healthy Individuals and in Patients With Ongoing Back Problems
,”
Spine
,
24
(
23
), pp.
2468
2474
.
13.
D'Lima
,
D. D.
,
Townsend
,
C. P.
,
Arms
,
S. W.
,
Morris
,
B. A.
, and
Colwell
,
C. W.
,
2005
, “
An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces
,”
J. Biomech.
,
38
(
2
), pp.
299
304
.
14.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.
15.
Kia
,
M.
,
Stylianou
,
A. P.
, and
Guess
,
T. M.
,
2014
, “
Evaluation of a Musculoskeletal Model With Prosthetic Knee Through Six Experimental Gait Trials
,”
Med. Eng. Phys.
,
36
(
3
), pp.
335
344
.
16.
Thelen
,
D. G.
,
Choi
,
K. W.
, and
Schmitz
,
A. M.
,
2014
, “
Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021033
.
17.
Hast
,
M. W.
, and
Piazza
,
S. J.
,
2013
, “
Dual-Joint Modeling for Estimation of Total Knee Replacement Contact Forces During Locomotion
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021013
.
18.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.
19.
Chen
,
Z.
,
Wang
,
L.
,
Liu
,
Y.
,
He
,
J.
,
Lian
,
Q.
,
Li
,
D.
, and
Jin
,
Z.
,
2015
, “
Effect of Component Mal-Rotation on Knee Loading in Total Knee Arthroplasty Using Multi-Body Dynamics Modeling Under a Simulated Walking Gait
,”
J. Orthop. Res.
,
33
(
9
), pp.
1287
1296
.
20.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.
21.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.
22.
Jung
,
Y.
,
Jung
,
M.
,
Lee
,
K.
, and
Koo
,
S.
,
2014
,
Ground Reaction Force Estimation Using an Insole-Type Pressure Mat and Joint Kinematics During Walking
,”
J. Biomech.
,
47
(
11
), pp.
2693
2699
.
23.
Simtk,
2015
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,” Simbios, NIH Center for Biomedical Computation at Stanford, Stanford, CA, accessed July 22, 2014, https://simtk.org/project/xml/downloads.xml?group_id=413
24.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Model. Pract. Theory
,
14
(
8
), pp.
1100
1111
.
25.
Horsman
,
M. K.
,
Koopman
,
H. F. J. M.
,
Van der Helm
,
F. C. T.
,
Prosé
,
L. P.
, and
Veeger
,
H. E. J.
,
2007
, “
Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity
,”
Clin. Biomech.
,
22
(
2
), pp.
239
247
.
26.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
,
1981
, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
,
14
(
11
), pp.
793
801
.
27.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.
28.
Phan
,
C. B.
, and
Koo
,
S.
,
2015
, “
Predicting Anatomical Landmarks and Bone Morphology of the Femur Using Local Region Matching
,”
Int. J. Comput. Assist. Radiol. Surg.
,
10
(
11
), pp.
1711
1719
.
29.
Du
,
S.
,
Zheng
,
N.
,
Xiong
,
L.
,
Ying
,
S.
, and
Xue
,
J.
,
2010
, “
Scaling Iterative Closest Point Algorithm for Registration of m–D Point Sets
,”
J. Vis. Commun. Image Represent.
,
21
(
5
), pp.
442
452
.
30.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
, and
Stokes
,
I.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.
31.
Rasmussen
,
J.
,
Zee
,
M. D.
,
Damsgaard
,
M.
,
Christensen
,
S. T.
,
Marek
,
C.
, and
Siebertz
,
K.
,
2005
, “
A General Method for Scaling Musculoskeletal Models
,”
2005 International Symposium on Computer Simulation in Biomechanics
, Cleveland, OH, July 28–30.
32.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2009
, “
Kinematic Analysis of Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
371
384
.
33.
Hurwitz
,
D. E.
,
Sumner
,
D. R.
,
Andriacchi
,
T. P.
, and
Sugar
,
D. A.
,
1998
, “
Dynamic Knee Loads During Gait Predict Proximal Tibial Bone Distribution
,”
J. Biomech.
,
31
(
5
), pp.
423
430
.
34.
Halder
,
A.
,
Kutzner
,
I.
,
Graichen
,
F.
,
Heinlein
,
B.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2012
, “
Influence of Limb Alignment on Mediolateral Loading in Total Knee Replacement
,”
J. Bone. Joint. Surg.
,
94
(
11
), pp.
1023
1029
.
35.
Kinney
,
A. L.
,
Besier
,
T. F.
,
D'Lima
,
D. D.
, and
Fregly
,
B. J.
,
2013
, “
Update on Grand Challenge Competition to Predict In Vivo Knee Loads
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021012
.
36.
Kim
,
Y.-H.
,
Park
,
W.-M.
, and
Phuong
,
B. T. T.
,
2010
, “
Effect of Joint Center Location on In-Vivo Joint Contact Forces During Walking
,”
ASME
Paper No. SBC2010-19353.
37.
Manal
,
K.
, and
Buchanan
,
T. S.
,
2013
, “
An Electromyogram-Driven Musculoskeletal Model of the Knee to Predict In Vivo Joint Contact Forces During Normal and Novel Gait Patterns
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021014
.
38.
Lundberg
,
H. J.
,
Knowlton
,
C.
, and
Wimmer
,
M. A.
,
2013
, “
Fine Tuning Total Knee Replacement Contact Force Prediction Algorithms Using Blinded Model Validation
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021015
.
39.
Redert
,
A.
,
Kaptein
,
B.
,
Reinders
,
M.
,
Van den Eelaart
,
I.
, and
Hendriks
,
E.
,
1999
, “
Extraction of Semantic 3D Models of Human Faces From Stereoscopic Image Sequences
,”
Acta Stereol.
,
18
(
2
), pp.
255
264
.
40.
Pellikaan
,
P.
,
van der Krogt
,
M. M.
,
Carbone
,
V.
,
Fluit
,
R.
,
Vigneron
,
L. M.
,
Van Deun
,
J.
, and
Koopman
,
H. F. J. M.
,
2014
, “
Evaluation of a Morphing Based Method to Estimate Muscle Attachment Sites of the Lower Extremity
,”
J. Biomech.
,
47
(
5
), pp.
1144
1150
.
41.
Chen
,
Z.
,
Zhang
,
X.
,
Ardestani
,
M. M.
,
Wang
,
L.
,
Liu
,
Y.
,
Lian
,
Q.
,
He
,
J.
,
Li
,
D.
, and
Jin
,
Z.
,
2014
, “
Prediction of In Vivo Joint Mechanics of an Artificial Knee Implant Using Rigid Multi-Body Dynamics With Elastic Contacts
,”
Proc. Inst. Mech. Eng., Part H
,
228
(
6
), pp.
564
575
.
42.
Asano
,
T.
,
Akagi
,
M.
, and
Nakamura
,
T.
,
2005
, “
The Functional Flexion–Extension Axis of the Knee Corresponds to the Surgical Epicondylar Axis: In Vivo Analysis Using a Biplanar Image-Matching Technique
,”
J. Arthroplasty
,
20
(
8
), pp.
1060
1067
.
43.
Akbarshahi
,
M.
,
Schache
,
A. G.
,
Fernandez
,
J. W.
,
Baker
,
R.
,
Banks
,
S.
, and
Pandy
,
M. G.
,
2010
, “
Non-Invasive Assessment of Soft-Tissue Artifact and Its Effect on Knee Joint Kinematics During Functional Activity
,”
J. Biomech.
,
43
(
7
), pp.
1292
1301
.
44.
Liu
,
W.
, and
Maitland
,
M. E.
,
2000
, “
The Effect of Hamstring Muscle Compensation for Anterior Laxity in the ACL-Deficient Knee During Gait
,”
J. Biomech.
,
33
(
7
), pp.
871
879
.
45.
Walter
,
J. P.
,
Kinney
,
A. L.
,
Banks
,
S. A.
,
D'Lima
,
D. D.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
, and
Fregly
,
B. J.
,
2014
, “
Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021031
.
46.
D'Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
, and
Colwell
,
C. W.
, Jr.
,
2007
, “
An ABJS Best Paper: Dynamic Intraoperative Ligament Balancing for Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
463
, pp.
208
212
.
You do not currently have access to this content.