Excessive loading of ligaments can activate the neural afferents that innervate the collagenous tissue, leading to a host of pathologies including pain. An integrated experimental and modeling approach was used to define the responses of neurons and the surrounding collagen fibers to the ligamentous matrix loading and to begin to understand how macroscopic deformation is translated to neuronal loading and signaling. A neuron-collagen construct (NCC) developed to mimic innervation of collagenous tissue underwent tension to strains simulating nonpainful (8%) or painful ligament loading (16%). Both neuronal phosphorylation of extracellular signal-regulated kinase (ERK), which is related to neuroplasticity (R2 ≥ 0.041; p ≤ 0.0171) and neuronal aspect ratio (AR) (R2 ≥ 0.250; p < 0.0001), were significantly correlated with tissue-level strains. As NCC strains increased during a slowly applied loading (1%/s), a “switchlike” fiber realignment response was detected with collagen reorganization occurring only above a transition point of 11.3% strain. A finite-element based discrete fiber network (DFN) model predicted that at bulk strains above the transition point, heterogeneous fiber strains were both tensile and compressive and increased, with strains in some fibers along the loading direction exceeding the applied bulk strain. The transition point identified for changes in collagen fiber realignment was consistent with the measured strain threshold (11.7% with a 95% confidence interval of 10.2–13.4%) for elevating ERK phosphorylation after loading. As with collagen fiber realignment, the greatest degree of neuronal reorientation toward the loading direction was observed at the NCC distraction corresponding to painful loading. Because activation of neuronal ERK occurred only at strains that produced evident collagen fiber realignment, findings suggest that tissue strain-induced changes in the micromechanical environment, especially altered local collagen fiber kinematics, may be associated with mechanotransduction signaling in neurons.

References

References
1.
Kallakuri
,
S.
,
Li
,
Y.
,
Chen
,
C.
, and
Cavanaugh
,
J. M.
,
2012
, “
Innervation of Cervical Ventral Facet Joint Capsule: Histological Evidence
,”
World J. Orthop.
,
3
(
2
), pp.
10
14
.
2.
Yahia
,
L. H.
, and
Newman
,
N.
,
1991
, “
Innervation of Spinal Ligaments of Patients With Disc Herniation. An Immunohistochemical Study
,”
Pathol. Res. Pract.
,
187
(
8
), pp.
936
938
.
3.
Petrie
,
S.
,
Collins
,
J. G.
,
Solomonow
,
M.
,
Wink
,
C.
,
Chuinard
,
R.
, and
D'Ambrosia
,
R.
,
1998
, “
Mechanoreceptors in the Human Elbow Ligaments
,”
J. Hand Surg. Am.
,
23
(
3
), pp.
512
518
.
4.
Schultz
,
R. A.
,
Miller
,
D. C.
,
Kerr
,
C. S.
, and
Micheli
,
L.
,
1984
, “
Mechanoreceptors in Human Cruciate Ligaments. A Histological Study
,”
J. Bone Joint Surg. Am.
,
66
(
7
), pp.
1072
1076
.
5.
Solomonow
,
M.
,
2004
, “
Ligaments: A Source of Work-Related Musculoskeletal Disorders
,”
J. Electromyogr. Kinesiol.
,
14
(
1
), pp.
49
60
.
6.
Winkelstein
,
B. A.
,
2011
, “
How Can Animal Models Inform on the Transition to Chronic Symptoms in Whiplash?
Spine
,
36
(
Suppl. 25
), pp.
S218
225
.
7.
Kallakuri
,
S.
,
Singh
,
A.
,
Lu
,
Y.
,
Chen
,
C.
,
Patwardhan
,
A.
, and
Cavanaugh
,
J. M.
,
2008
, “
Tensile Stretching of Cervical Facet Joint Capsule and Related Axonal Changes
,”
Eur. Spine J.
,
17
(
4
), pp.
556
563
.
8.
Chen
,
C.
,
Lu
,
Y.
,
Kallakuri
,
S.
,
Patwardhan
,
A.
, and
Cavanaugh
,
J. M.
,
2006
, “
Distribution of A-Delta and C-Fiber Receptors in the Cervical Facet Joint Capsule and Their Response to Stretch
,”
J. Bone Joint Surg. Am.
,
88
(
8
), pp.
1807
1816
.
9.
Kras
,
J. V.
,
Tanaka
,
K.
,
Gilliland
,
T. M.
, and
Winkelstein
,
B. A.
,
2013
, “
An Anatomical and Immunohistochemical Characterization of Afferents Innervating the C6-C7 Facet Joint After Painful Joint Loading in the Rat
,”
Spine
,
38
(
6
), pp.
E325
331
.
10.
Lu
,
Y.
,
Chen
,
C.
,
Kallakuri
,
S.
,
Patwardhan
,
A.
, and
Cavanaugh
,
J. M.
,
2005
, “
Neural Response of Cervical Facet Joint Capsule to Stretch: A Study of Whiplash Pain Mechanism
,”
Stapp Car Crash J.
,
49
, pp.
49
65
.
11.
Crosby
,
N. D.
,
Gilliland
,
T. M.
, and
Winkelstein
,
B. A.
,
2014
, “
Early Afferent Activity From the Facet Joint After Painful Trauma to Its Capsule Potentiates Neuronal Excitability and Glutamate Signaling in the Spinal Cord
,”
Pain
,
155
(
9
), pp.
1878
1887
.
12.
Lee
,
K. E.
, and
Winkelstein
,
B. A.
,
2009
, “
Joint Distraction Magnitude is Associated With Different Behavioral Outcomes and Substance P Levels for Cervical Facet Joint Loading in the Rat
,”
J. Pain
,
10
(
4
), pp.
436
445
.
13.
Lee
,
K. E.
,
Davis
,
M. B.
, and
Winkelstein
,
B. A.
,
2008
, “
Capsular Ligament Involvement in the Development of Mechanical Hyperalgesia After Facet Joint Loading: Behavioral and Inflammatory Outcomes in a Rodent Model of Pain
,”
J. Neurotrauma
,
25
(
11
), pp.
1383
1393
.
14.
Quinn
,
K. P.
,
Dong
,
L.
,
Golder
,
F. J.
, and
Winkelstein
,
B. A.
,
2010
, “
Neuronal Hyperexcitability in the Dorsal Horn After Painful Facet Joint Injury
,”
Pain
,
151
(
2
), pp.
414
421
.
15.
Quinn
,
K. P.
,
Lee
,
K. E.
,
Ahaghotu
,
C. C.
, and
Winkelstein
,
B. A.
,
2007
, “
Structural Changes in the Cervical Facet Capsular Ligament: Potential Contributions to Pain Following Subfailure Loading
,”
Stapp Car Crash J.
,
51
, pp.
169
187
.
16.
Quinn
,
K. P.
,
Bauman
,
J. A.
,
Crosby
,
N. D.
, and
Winkelstein
,
B. A.
,
2010
, “
Anomalous Fiber Realignment During Tensile Loading of the Rat Facet Capsular Ligament Identifies Mechanically Induced Damage and Physiological Dysfunction
,”
J. Biomech.
,
43
(
10
), pp.
1870
1875
.
17.
Crosby
,
N. D.
,
Weisshaar
,
C. L.
, and
Winkelstein
,
B. A.
,
2013
, “
Spinal Neuronal Plasticity is Evident Within 1 Day After a Painful Cervical Facet Joint Injury
,”
Neurosci. Lett.
,
542
, pp.
102
106
.
18.
Kras
,
J. V.
,
Kartha
,
S.
, and
Winkelstein
,
B. A.
,
2015
, “
Intra-Articular Nerve Growth Factor Regulates Development, But Not Maintenance, of Injury-Induced Facet Joint Pain & Spinal Neuronal Hypersensitivity
,”
Osteoarthritis and Cartilage
,
23
(
11
) pp.
1999
2008
.
19.
Rosso
,
F.
,
Giordano
,
A.
,
Barbarisi
,
M.
, and
Barbarisi
,
A.
,
2004
, “
From Cell-ECM Interactions to Tissue Engineering
,”
J. Cell. Physiol.
,
199
(
2
), pp.
174
180
.
20.
Barros
,
C. S.
,
Franco
,
S. J.
, and
Müller
,
U.
,
2011
, “
Extracellular Matrix: Functions in the Nervous System
,”
Cold Spring Harbor Perspect. Biol.
,
3
(
1
), p.
a005108
.
21.
Spedden
,
E.
,
White
,
J. D.
,
Naumova
,
E. N.
,
Kaplan
,
D. L.
, and
Staii
,
C.
,
2012
, “
Elasticity Maps of Living Neurons Measured by Combined Fluorescence and Atomic Force Microscopy
,”
Biophys. J.
,
103
(
5
), pp.
868
877
.
22.
Wenger
,
M. P. E.
,
Bozec
,
L.
,
Horton
,
M. A.
, and
Mesquida
,
P.
,
2007
, “
Mechanical Properties of Collagen Fibrils
,”
Biophys. J.
,
93
(
4
), pp.
1255
1263
.
23.
Lopez-Garcia
,
M. D. C.
,
Beebe
,
D. J.
, and
Crone
,
W. C.
,
2010
, “
Young's Modulus of Collagen at Slow Displacement Rates
,”
Biomed. Mater. Eng.
,
20
(
6
), pp.
361
369
.
24.
Tower
,
T. T.
,
Neidert
,
M. R.
, and
Tranquillo
,
R. T.
,
2002
, “
Fiber Alignment Imaging During Mechanical Testing of Soft Tissues
,”
Ann. Biomed. Eng.
,
30
(
10
), pp.
1221
1233
.
25.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
,
2009
, “
Vector Correlation Technique for Pixel-Wise Detection of Collagen Fiber Realignment during Injurious Tensile Loading
,”
J. Biomed. Opt.
,
14
(
5
),p.
054010
.
26.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2009
, “
Image-Based Multiscale Modeling Predicts Tissue-Level and Network-Level Fiber Reorganization in Stretched Cell-Compacted Collagen Gels
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
42
), pp.
17675
17680
.
27.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
,
2008
, “
Altered Collagen Fiber Kinematics Define the Onset of Localized Ligament Damage During Loading
,”
J. Appl. Physiol.
,
105
(
6
), pp.
1881
1888
.
28.
Dong
,
L.
,
Quindlen
,
J. C.
,
Lipschutz
,
D. E.
, and
Winkelstein
,
B. A.
,
2012
, “
Whiplash-Like Facet Joint Loading Initiates Glutamatergic Responses in the DRG and Spinal Cord Associated With Behavioral Hypersensitivity
,”
Brain Res.
,
1461
, pp.
51
63
.
29.
Schenck
,
R. C.
,
Kovach
,
I. S.
,
Agarwal
,
A.
,
Brummett
,
R.
,
Ward
,
R. A.
,
Lanctot
,
D.
, and
Athanasiou
,
K. A.
,
1999
, “
Cruciate Injury Patterns in Knee Hyperextension: A Cadaveric Model
,”
Arthroscopy
,
15
(
5
), pp.
489
495
.
30.
Panjabi
,
M. M.
,
Cholewicki
,
J.
,
Nibu
,
K.
,
Grauer
,
J.
, and
Vahldiek
,
M.
,
1998
, “
Capsular Ligament Stretches During In Vitro Whiplash Simulations
,”
J. Spinal Disord.
,
11
(
3
), pp.
227
232
.
31.
Noyes
,
F. R.
,
DeLucas
,
J. L.
, and
Torvik
,
P. J.
,
1974
, “
Biomechanics of Anterior Cruciate Ligament Failure: An Analysis of Strain-Rate Sensitivity and Mechanisms of Failure in Primates
,”
J. Bone Jt. Surg. Am.
,
56
(
2
), pp.
236
253
.
32.
Vader
,
D.
,
Kabla
,
A.
,
Weitz
,
D.
, and
Mahadevan
,
L.
,
2009
, “
Strain-Induced Alignment in Collagen Gels
,”
PLoS One
,
4
(
6
), p.
e5902
.
33.
Cullen
,
D. K.
,
Simon
,
C. M.
, and
LaPlaca
,
M. C.
,
2007
, “
Strain Rate-Dependent Induction of Reactive Astrogliosis and Cell Death in Three-Dimensional Neuronal-Astrocytic Co-Cultures
,”
Brain Res.
,
1158
, pp.
103
115
.
34.
Geddes
,
D. M.
,
Cargill
,
R. S.
, and
LaPlaca
,
M. C.
,
2003
, “
Mechanical Stretch to Neurons Results in a Strain Rate and Magnitude-Dependent Increase in Plasma Membrane Permeability
,”
J. Neurotrauma
,
20
(
10
), pp.
1039
1049
.
35.
Delmas
,
P.
,
Hao
,
J.
, and
Rodat-Despoix
,
L.
,
2011
, “
Molecular Mechanisms of Mechanotransduction in Mammalian Sensory Neurons
,”
Nat. Rev. Neurosci.
,
12
(
3
), pp.
139
153
.
36.
Martinac
,
B.
,
2004
, “
Mechanosensitive Ion Channels: Molecules of Mechanotransduction
,”
J. Cell Sci.
,
117
(
Pt 12
), pp.
2449
2460
.
37.
Raoux
,
M.
,
Rodat-Despoix
,
L.
,
Azorin
,
N.
,
Giamarchi
,
A.
,
Hao
,
J.
,
Maingret
,
F.
,
Crest
,
M.
,
Coste
,
B.
, and
Delmas
,
P.
,
2007
, “
Mechanosensor Channels in Mammalian Somatosensory Neurons
,”
Sensors (Basel)
,
7
(
9
), pp.
1667
1682
.
38.
Hemphill
,
M. A.
,
Dabiri
,
B. E.
,
Gabriele
,
S.
,
Kerscher
,
L.
,
Franck
,
C.
,
Goss
,
J. A.
,
Alford
,
P. W.
, and
Parker
,
K. K.
,
2011
, “
A Possible Role for Integrin Signaling in Diffuse Axonal Injury
,”
PLoS One
,
6
(
7
), p.
e22899
.
39.
Chaturvedi
,
L. S.
,
Gayer
,
C. P.
,
Marsh
,
H. M.
, and
Basson
,
M. D.
,
2008
, “
Repetitive Deformation Activates Src-Independent FAK-Dependent ERK Motogenic Signals in Human Caco-2 Intestinal Epithelial Cells
,”
Am. J. Physiol. Cell Physiol.
,
294
(
6
), pp.
C1350
1361
.
40.
Samarakoon
,
R.
, and
Higgins
,
P. J.
,
2003
, “
Pp60c-Src Mediates ERK Activation/Nuclear Localization and PAI-1 Gene Expression in Response to Cellular Deformation
,”
J. Cell. Physiol.
,
195
(
3
), pp.
411
420
.
41.
Neary
,
J. T.
,
Kang
,
Y.
,
Willoughby
,
K. A.
, and
Ellis
,
E. F.
,
2003
, “
Activation of Extracellular Signal-Regulated Kinase by Stretch-Induced Injury in Astrocytes Involves Extracellular ATP and P2 Purinergic Receptors
,”
J. Neurosci.
,
23
(
6
), pp.
2348
2356
.
42.
Stamboulian
,
S.
,
Choi
,
J.-S.
,
Ahn
,
H.-S.
,
Chang
,
Y.-W.
,
Tyrrell
,
L.
,
Black
,
J. A.
,
Waxman
,
S. G.
, and
Dib-Hajj
,
S. D.
,
2010
, “
ERK1/2 Mitogen-Activated Protein Kinase Phosphorylates Sodium Channel Na(V)1.7 and Alters Its Gating Properties
,”
J. Neurosci.
,
30
(
5
), pp.
1637
1647
.
43.
Cheng
,
J.-K.
, and
Ji
,
R.-R.
,
2008
, “
Intracellular Signaling in Primary Sensory Neurons and Persistent Pain
,”
Neurochem. Res.
,
33
(
10
), pp.
1970
1978
.
44.
Gao
,
Y.-J.
, and
Ji
,
R.-R.
,
2009
, “
c-Fos and pERK, Which is a Better Marker for Neuronal Activation and Central Sensitization After Noxious Stimulation and Tissue Injury?
Open Pain J.
,
2
(
1
), pp.
11
17
.
45.
Ji
,
R. R.
,
Baba
,
H.
,
Brenner
,
G. J.
, and
Woolf
,
C. J.
,
1999
, “
Nociceptive-Specific Activation of ERK in Spinal Neurons Contributes to Pain Hypersensitivity
,”
Nat. Neurosci.
,
2
(
12
), pp.
1114
1119
.
46.
Kras
,
J. V.
,
Weisshaar
,
C. L.
,
Quindlen
,
J.
, and
Winkelstein
,
B. A.
,
2013
, “
Brain-Derived Neurotrophic Factor is Upregulated in the Cervical Dorsal Root Ganglia and Spinal Cord and Contributes to the Maintenance of Pain From Facet Joint Injury in the Rat
,”
J. Neurosci. Res.
,
91
(
10
), pp.
1312
1321
.
47.
Sander
,
E. A.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2009
, “
Image-Based Multiscale Structural Models of Fibrous Engineered Tissues
,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC 2009
), Minneapolis, MN, Sept. 3–6, pp.
4270
4272
.
48.
Lake
,
S. P.
, and
Barocas
,
V. H.
,
2011
, “
Mechanical and Structural Contribution of Non-Fibrillar Matrix in Uniaxial Tension: A Collagen-Agarose Co-Gel Model
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1891
1903
.
49.
Nair
,
A.
,
Baker
,
B. M.
,
Trappmann
,
B.
,
Chen
,
C. S.
, and
Shenoy
,
V. B.
,
2014
, “
Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions From Discrete Fiber Network Simulations
,”
Biophys. J.
,
107
(
8
), pp.
1829
1840
.
50.
Aghvami
,
M.
,
Barocas
,
V. H.
, and
Sander
,
E. A.
,
2013
, “
Multiscale Mechanical Simulations of Cell Compacted Collagen Gels
,”
ASME J. Biomech. Eng.
,
135
(
7
), p.
071004
.
51.
Hadi
,
M. F.
,
Sander
,
E. A.
,
Ruberti
,
J. W.
, and
Barocas
,
V. H.
,
2012
, “
Simulated Remodeling of Loaded Collagen Networks Via Strain-Dependent Enzymatic Degradation and Constant-Rate Fiber Growth
,”
Mech. Mater.
,
44
, pp.
72
82
.
52.
Evans
,
M. C.
, and
Barocas
,
V. H.
,
2009
, “
The Modulus of Fibroblast-Populated Collagen Gels is Not Determined by Final Collagen and Cell Concentration: Experiments and an Inclusion-Based Model
,”
ASME J. Biomech. Eng.
,
131
(
10
), p.
101014
.
53.
Dong
,
L.
,
Guarino
,
B. B.
,
Jordan-Sciutto
,
K. L.
, and
Winkelstein
,
B. A.
,
2011
, “
Activating Transcription Factor 4, A Mediator of the Integrated Stress Response, is Increased in the Dorsal Root Ganglia Following Painful Facet Joint Distraction
,”
Neuroscience
,
193
, pp.
377
386
.
54.
Bonner
,
T. J.
,
Newell
,
N.
,
Karunaratne
,
A.
,
Pullen
,
A. D.
,
Amis
,
A. A. M. J.
,
Bull
,
A.
, and
Masouros
,
S. D.
,
2015
, “
Strain-Rate Sensitivity of the Lateral Collateral Ligament of the Knee
,”
J. Mech. Behav. Biomed. Mater.
,
41
, pp.
261
270
.
55.
Crisco
,
J. J.
,
Moore
,
D. C.
, and
McGovern
,
R. D.
,
2002
, “
Strain-Rate Sensitivity of the Rabbit MCL Diminishes at Traumatic Loading Rates
,”
J. Biomech.
,
35
(
10
), pp.
1379
1385
.
56.
Patel
,
T. P.
,
Man
,
K.
,
Firestein
,
B. L.
, and
Meaney
,
D. F.
,
2015
, “
Automated Quantification of Neuronal Networks and Single-Cell Calcium Dynamics Using Calcium Imaging
,”
J. Neurosci. Methods.
,
243
, pp.
26
38
.
57.
MacArthur
,
M. W.
, and
Thornton
,
J. M.
,
1993
, “
Conformational Analysis of Protein Structures Derived From NMR Data
,”
Proteins
,
17
(
3
), pp.
232
251
.
58.
Miller
,
K. S.
,
Connizzo
,
B. K.
, and
Soslowsky
,
L. J.
,
2012
, “
Collagen Fiber Re-Alignment in a Neonatal Developmental Mouse Supraspinatus Tendon Model
,”
Ann. Biomed. Eng.
,
40
(
5
), pp.
1102
1110
.
59.
Weisshaar
,
C. L.
,
Dong
,
L.
,
Bowman
,
A. S.
,
Perez
,
F. M.
,
Guarino
,
B. B.
,
Sweitzer
,
S. M.
, and
Winkelstein
,
B. A.
,
2010
, “
Metabotropic Glutamate Receptor-5 and Protein Kinase C-Epsilon Increase in Dorsal Root Ganglion Neurons and Spinal Glial Activation in an Adolescent Rat Model of Painful Neck Injury
,”
J. Neurotrauma
,
27
(
12
), pp.
2261
2271
.
60.
Lee
,
K. E.
,
Franklin
,
A. N.
,
Davis
,
M. B.
, and
Winkelstein
,
B. A.
,
2006
, “
Tensile Cervical Facet Capsule Ligament Mechanics: Failure and Subfailure Responses in the Rat
,”
J. Biomech.
,
39
(
7
), pp.
1256
1264
.
61.
Kras
,
J.
V
,
Dong
,
L.
, and
Winkelstein
,
B. A.
,
2014
, “
Increased Interleukin-1α and Prostaglandin E2 Expression in the Spinal Cord at 1 Day After Painful Facet Joint Injury: Evidence of Early Spinal Inflammation
,”
Spine
,
39
(
3
), pp.
207
212
.
62.
Zhang
,
S.
,
Nicholson
,
K. J.
,
Smith
,
J. R.
,
Gilliland
,
T. M.
,
Syré
,
P. P.
, and
Winkelstein
,
B. A.
,
2013
, “
The Roles of Mechanical Compression and Chemical Irritation in Regulating Spinal Neuronal Signaling in Painful Cervical Nerve Root Injury
,”
Stapp Car Crash J.
,
57
, pp.
219
242
.
63.
Atanasov
,
D.
,
2010
, “
Two-Phase Linear Regression Model
,” MATLAB Central File Exchange, The Mathworks, Natick, MA, http://www.mathworks.com/matlabcentral/fileexchange/26804-two-phase-linear-regression-model
64.
Diniz
,
C. A. R.
, and
Brochi
,
L. C.
,
2005
, “
Robustness of Two-Phase Regression Tests
,”
Revstat—Stat. J.
,
3
(
1
), pp.
1
18
.
65.
Koul
,
H. L.
,
Qian
,
L.
, and
Surgailis
,
D.
,
2003
, “
Asymptotics of M-Estimators in Two-Phase Linear Regression Models
,”
Stochastic Processes Appl.
,
103
(
1
), pp.
123
154
.
66.
Bain
,
A. C.
,
Raghupathi
,
R.
, and
Meaney
,
D. F.
,
2001
, “
Dynamic Stretch Correlates to Both Morphological Abnormalities and Electrophysiological Impairment in a Model of Traumatic Axonal Injury
,”
J. Neurotrauma
,
18
(
5
), pp.
499
511
.
67.
Hubbard
,
R. D.
, and
Winkelstein
,
B. A.
,
2008
, “
Dorsal Root Compression Produces Myelinated Axonal Degeneration Near the Biomechanical Thresholds for Mechanical Behavioral Hypersensitivity
,”
Exp. Neurol.
,
212
(
2
), pp.
482
489
.
68.
McDonald
,
J. H.
,
2014
,
Handbook of Biological Statistics
,
3rd ed.
,
Sparkly House Publishing
,
Baltimore, MD
.
69.
Schwartz
,
M. A.
,
2010
, “
Integrins and Extracellular Matrix in Mechanotransduction
,”
Cold Spring Harbor Perspect. Biol.
,
2
(
12
), p.
a005066
.
70.
Spedden
,
E.
, and
Staii
,
C.
,
2013
, “
Neuron Biomechanics Probed by Atomic Force Microscopy
,”
Int. J. Mol. Sci.
,
14
(
8
), pp.
16124
16140
.
71.
Dong
,
L.
, and
Winkelstein
,
B. A.
,
2010
, “
Simulated Whiplash Modulates Expression of the Glutamatergic System in the Spinal Cord Suggesting Spinal Plasticity is Associated With Painful Dynamic Cervical Facet Loading
,”
J. Neurotrauma
,
27
(
1
), pp.
163
174
.
72.
Liao
,
H.
, and
Belkoff
,
S. M.
,
1999
, “
A Failure Model for Ligaments
,”
J. Biomech.
,
32
(
2
), pp.
183
188
.
73.
Münster
,
S.
,
Jawerth
,
L. M.
,
Leslie
,
B. A.
,
Weitz
,
J. I.
,
Fabry
,
B.
, and
Weitz
,
D. A.
,
2013
, “
Strain History Dependence of the Nonlinear Stress Response of Fibrin and Collagen Networks
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
30
), pp.
12197
12202
.
74.
Roeder
,
B. A.
,
Kokini
,
K.
,
Sturgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
,
2002
, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
214
222
.
75.
Lu
,
Y.-B.
,
Franze
,
K.
,
Seifert
,
G.
,
Steinhäuser
,
C.
,
Kirchhoff
,
F.
,
Wolburg
,
H.
,
Guck
,
J.
,
Janmey
,
P.
,
Wei
,
E.-Q.
,
Käs
,
J.
, and
Reichenbach
,
A.
,
2006
, “
Viscoelastic Properties of Individual Glial Cells and Neurons in the CNS
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
47
), pp.
17759
17764
.
76.
Topp
,
K. S.
, and
Boyd
,
B. S.
,
2006
, “
Structure and Biomechanics of Peripheral Nerves: Nerve Responses to Physical Stresses and Implications for Physical Therapist Practice
,”
Phys. Ther.
,
86
(
1
), pp.
92
109
.
77.
Xu
,
B.
,
Li
,
H.
, and
Zhang
,
Y.
,
2013
, “
Understanding the Viscoelastic Behavior of Collagen Matrices Through Relaxation Time Distribution Spectrum
,”
Biomatter
,
3
(
3
), p.
e24651
.
78.
Silver
,
F. H.
,
Seehra
,
G. P.
,
Freeman
,
J. W.
, and
DeVore
,
D.
,
2002
, “
Viscoelastic Properties of Young and Old Human Dermis: A Proposed Molecular Mechanism for Elastic Energy Storage in Collagen and Elastin
,”
J. Appl. Polym. Sci.
,
86
(
8
), pp.
1978
1985
.
79.
In't Veld
,
P. J.
, and
Stevens
,
M. J.
,
2008
, “
Simulation of the Mechanical Strength of a Single Collagen Molecule
,”
Biophys. J.
,
95
(
1
), pp.
33
39
.
80.
Laplaca
,
M. C.
, and
Prado
,
G. R.
,
2010
, “
Neural Mechanobiology and Neuronal Vulnerability to Traumatic Loading
,”
J. Biomech.
,
43
(
1
), pp.
71
78
.
81.
Miller
,
K. S.
,
Connizzo
,
B. K.
,
Feeney
,
E.
,
Tucker
,
J. J.
, and
Soslowsky
,
L. J.
,
2012
, “
Examining Differences in Local Collagen Fiber Crimp Frequency Throughout Mechanical Testing in a Developmental Mouse Supraspinatus Tendon Model
,”
ASME J. Biomech. Eng.
,
134
(
4
), p.
041004
.
82.
Franchi
,
M.
,
Quaranta
,
M.
,
Macciocca
,
M.
,
Leonardi
,
L.
,
Ottani
,
V.
,
Bianchini
,
P.
,
Diaspro
,
A.
, and
Ruggeri
,
A.
,
2010
, “
Collagen Fibre Arrangement and Functional Crimping Pattern of the Medial Collateral Ligament in the Rat Knee
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
18
(
12
), pp.
1671
1678
.
83.
Sacks
,
M. S.
,
2003
, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
280
287
.
84.
Cullen
,
D. K.
,
Lessing
,
M. C.
, and
LaPlaca
,
M. C.
,
2007
, “
Collagen-Dependent Neurite Outgrowth and Response to Dynamic Deformation in Three-Dimensional Neuronal Cultures
,”
Ann. Biomed. Eng.
,
35
(
5
), pp.
835
846
.
85.
Khalsa
,
P. S.
,
Hoffman
,
A. H.
, and
Grigg
,
P.
,
1996
, “
Mechanical States Encoded by Stretch-Sensitive Neurons in Feline Joint Capsule
,”
J. Neurophysiol.
,
76
(
1
), pp.
175
187
.
86.
Yamashita
,
T.
,
Minaki
,
Y.
,
Ozaktay
,
A. C.
,
Cavanaugh
,
J. M.
, and
King
,
A. I.
,
1996
, “
A Morphological Study of the Fibrous Capsule of the Human Lumbar Facet Joint
,”
Spine
,
21
(
5
), pp.
538
543
.
87.
Mommersteeg
,
T. J.
,
Blankevoort
,
L.
,
Kooloos
,
J. G.
,
Hendriks
,
J. C.
,
Kauer
,
J. M.
, and
Huiskes
,
R.
,
1994
, “
Nonuniform Distribution of Collagen Density in Human Knee Ligaments
,”
J. Orthop. Res.
,
12
(
2
), pp.
238
245
.
88.
McLain
,
R. F.
, and
Pickar
,
J. G.
,
1998
, “
Mechanoreceptor Endings in Human Thoracic and Lumbar Facet Joints
,”
Spine
,
23
(
2
), pp.
168
173
.
89.
Cavanaugh
,
J. M.
,
Lu
,
Y.
,
Chen
,
C.
, and
Kallakuri
,
S.
,
2006
, “
Pain Generation in Lumbar and Cervical Facet Joints
,”
J. Bone Jt. Surg. Am.
,
88
(
Suppl. 2
), pp.
63
67
.
90.
Tang-Schomer
,
M. D.
,
Patel
,
A. R.
,
Baas
,
P. W.
, and
Smith
,
D. H.
,
2010
, “
Mechanical Breaking of Microtubules in Axons During Dynamic Stretch Injury Underlies Delayed Elasticity, Microtubule Disassembly, and Axon Degeneration
,”
FASEB J.
,
24
(
5
), pp.
1401
1410
.
91.
Jaumard
,
N. V.
,
Welch
,
W. C.
, and
Winkelstein
,
B. A.
,
2011
, “
Spinal Facet Joint Biomechanics and Mechanotransduction in Normal, Injury and Degenerative Conditions
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071010
.
92.
Magou
,
G. C.
,
Pfister
,
B. J.
, and
Berlin
,
J. R.
,
2015
, “
Effect of Acute Stretch Injury on Action Potential and Network Activity of Rat Neocortical Neurons in Culture
,”
Brain Res.
,
1624
, pp.
525
535
.
93.
Siddique
,
R.
, and
Thakor
,
N.
,
2014
, “
Investigation of Nerve Injury Through Microfluidic Devices
,”
J. R. Soc. Interface
,
11
(
90
), p.
20130676
.
94.
Mietto
,
B. S.
,
Mostacada
,
K.
, and
Martinez
,
A. M. B.
,
2015
, “
Neurotrauma and Inflammation: CNS and PNS Responses
,”
Mediators Inflammation
,
2015
, p.
251204
.
95.
Cullen
,
D. K.
,
Vernekar
,
V. N.
, and
LaPlaca
,
M. C.
,
2011
, “
Trauma-Induced Plasmalemma Disruptions in Three-Dimensional Neural Cultures are Dependent on Strain Modality and Rate
,”
J. Neurotrauma
,
28
(
11
), pp.
2219
2233
.
96.
Zhang
,
S.
,
Barocas
,
V. H.
, and
Winkelstein
,
B. A.
,
2014
, “
Local Neuronal Loading Modulates Perk Release in a Neuron-Collagen Gel Construct Simulating Facet Capsule Injury
,” 7th World Congress of Biomechanics, Boston, MA, July 6–11.
You do not currently have access to this content.