Embolic coiling is one of the most effective treatments for cerebral aneurysms (CAs), largely due to the hemodynamic modifications that the treatment effects in the aneurysmal environment. However, coiling can have very different hemodynamic outcomes in aneurysms with different geometries. Previous work in the field of biofluid mechanics has demonstrated on a general level that geometry is a driving factor behind aneurysmal hemodynamics. The goal of this study was to relate two specific geometric factors that describe CAs (i.e., dome size (DS) and parent-vessel contact-angle (PV-CA)) and one factor that describes treatment (i.e., coil packing density (PD)) to three clinically relevant hemodynamic responses (i.e., aneurysmal root-mean-square velocity (Vrms), aneurysmal wall shear stress (WSS), and cross-neck flow (CNF)). Idealized models of basilar tip aneurysms were created in both virtual and physical forms to satisfy two-level multifactorial experimental designs. Steady and pulsatile flow hemodynamics were then evaluated in the virtual models using computational fluid dynamics (CFD) (before and after virtual treatment with finite element (FE) embolic coil models), and hemodynamics were also evaluated in the physical models using particle image velocimetry (PIV) (before and after treatment with actual embolic coils). Results showed that among the factors considered, PD made the greatest contributions to effects on hemodynamic responses in and around the aneurysmal sac (i.e., Vrms and WSS), while DS made the greatest contributions to effects on hemodynamics at the neck (i.e., CNF). Results also showed that while a geometric factor (e.g., PV-CA) may play a relatively minor role in dictating hemodynamics in the untreated case, the same factor can play a much greater role after coiling. We consider the significance of these findings in the context of aneurysmal recurrence and rupture, and explore potential roles for the proposed methods in endovascular treatment planning.

References

References
1.
Schievink
,
W. I.
,
1997
, “
Intracranial Aneurysms
,”
N. Engl. J. Med.
,
336
(
1
), pp.
28
40
.
2.
Meng
,
H.
,
Wang
,
Z.
,
Hoi
,
Y.
,
Gao
,
L.
,
Metaxa
,
E.
,
Swartz
,
D. D.
, and
Kolega
,
J.
,
2007
, “
Complex Hemodynamics at the Apex of an Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation
,”
Stroke
,
38
(
6
), pp.
1924
1931
.
3.
Connolly
,
E. S.
,
Rabinstein
,
A. A.
,
Carhuapoma
,
J. R.
,
Derdeyn
,
C. P.
,
Dion
,
J.
,
Higashida
,
R. T.
,
Hoh
,
B. L.
,
Kirkness
,
C. J.
,
Naidech
,
A. M.
,
Ogilvy
,
C. S.
,
Patel
,
A. B.
,
Thompson
,
B. G.
, and
Vespa
,
P.
,
2012
, “
Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association
,”
Stroke
,
43
(
6
), pp.
1711
1737
.
4.
Johnston
,
S. C.
,
Wilson
,
C. B.
,
Halbach
,
V. V.
,
Higashida
,
R. T.
,
Dowd
,
C. F.
,
McDermott
,
M. W.
,
Applebury
,
C. B.
,
Farley
,
T. L.
, and
Gress
,
D. R.
,
2000
, “
Endovascular and Surgical Treatment of Unruptured Cerebral Aneurysms: Comparison of Risks
,”
Ann. Neurol.
,
48
(
1
), pp.
11
19
.
5.
Babiker
,
M. H.
,
Gonzalez
,
L. F.
,
Albuquerque
,
F.
,
Collins
,
D.
,
Elvikis
,
A.
, and
Frakes
,
D. H.
,
2010
, “
Quantitative Effects of Coil Packing Density on Cerebral Aneurysm Fluid Dynamics: An In Vitro Steady Flow Study
,”
Ann. Biomed. Eng.
,
38
(
7
), pp.
2293
2301
.
6.
Morales
,
H. G.
,
Kim
,
M.
,
Vivas
,
E. E.
,
Villa-Uriol
,
M. C.
,
Larrabide
,
I.
,
Sola
,
T.
,
Guimaraens
,
L.
, and
Frangi
,
A. F.
,
2011
, “
How Do Coil Configuration and Packing Density Influence Intra-Aneurysmal Hemodynamics?
,”
Am. J. Neuroradiol.
,
32
(
10
), pp.
1935
1941
.
7.
Johnston
,
S. C.
,
2000
, “
Effect of Endovascular Services and Hospital Volume on Cerebral Aneurysm Treatment Outcomes
,”
Stroke
,
31
(
1
), pp.
111
117
.
8.
Brinjikji
,
W.
,
Cloft
,
H. J.
, and
Kallmes
,
D. F.
,
2009
, “
Difficult Aneurysms for Endovascular Treatment: Overwide or Undertall?
,”
Am. J. Neuroradiol.
,
30
(
8
), pp.
1513
1517
.
9.
Debrun
,
G. M.
,
Aletich
,
V. A.
,
Kehrli
,
P.
,
Misra
,
M.
,
Ausman
,
J. I.
,
Charbel
,
F.
, and
Shownkeen
,
H.
,
1998
, “
Aneurysm Geometry: An Important Criterion in Selecting Patients for Guglielmi Detachable Coiling
,”
Neurol. Med.-Chir.
,
38
(
suppl
), pp.
1
20
.
10.
Sforza
,
D. M.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2009
, “
Hemodynamics of Cerebral Aneurysms
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
91
107
.
11.
Cebral
,
J. R.
,
Mut
,
F.
,
Weir
,
J.
, and
Putman
,
C. M.
,
2011
, “
Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture
,”
Am. J. Neuroradiol.
,
32
(
2
), pp.
264
270
.
12.
Hoi
,
Y.
,
Meng
,
H.
,
Woodward
,
S. H.
,
Bendok
,
B. R.
,
Hanel
,
R. A.
,
Guterman
,
L. R.
, and
Hopkins
,
L. N.
,
2004
, “
Effects of Arterial Geometry on Aneurysm Growth: Three-Dimensional Computational Fluid Dynamics Study
,”
J. Neurosurg.
,
101
(
4
), pp.
676
681
.
13.
Lasheras
,
J. C.
,
2007
, “
The Biomechanics of Arterial Aneurysms
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
293
319
.
14.
Raymond
,
J.
,
Guilbert
,
F.
,
Weill
,
A.
,
Georganos
,
S. A.
,
Juravsky
,
L.
,
Lambert
,
A.
,
Lamoureux
,
J.
,
Chagnon
,
M.
, and
Roy
,
D.
,
2003
, “
Long-Term Angiographic Recurrences After Selective Endovascular Treatment of Aneurysms With Detachable Coils
,”
Stroke
,
34
(
6
), pp.
1398
1403
.
15.
Sluzewski
,
M.
,
van Rooij
,
W. J.
,
Slob
,
M. J.
,
Bescós
,
J. O.
,
Slump
,
C. H.
, and
Wijnalda
,
D.
,
2004
, “
Relation Between Aneurysm Volume, Packing, and Compaction in 145 Cerebral Aneurysms Treated With Coils
,”
Radiology
,
231
(
3
), pp.
653
658
.
16.
Babiker
,
M. H.
,
Gonzalez
,
L. F.
,
Ryan
,
J.
,
Albuquerque
,
F.
,
Collins
,
D.
,
Elvikis
,
A.
, and
Frakes
,
D. H.
,
2012
, “
Influence of Stent Configuration on Cerebral Aneurysm Fluid Dynamics
,”
J. Biomech.
,
45
(
3
), pp.
440
447
.
17.
Xiang
,
J.
,
Natarajan
,
S. K.
,
Tremmel
,
M.
,
Ma
,
D.
,
Mocco
,
J.
,
Hopkins
,
L. N.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
, and
Meng
,
H.
,
2011
, “
Hemodynamic–Morphologic Discriminants For Intracranial Aneurysm Rupture
,”
Stroke
,
42
(
1
), pp.
144
152
.
18.
Mut
,
F.
,
Löhner
,
R.
,
Chien
,
A.
,
Tateshima
,
S.
,
Viñuela
,
F.
,
Putman
,
C.
, and
Cebral
,
J. R.
,
2011
, “
Computational Hemodynamics Framework For The Analysis of Cerebral Aneurysms
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
6
), pp.
822
839
.
19.
Baharoglu
,
M. I.
,
Schirmer
,
C. M.
,
Hoit
,
D. A.
,
Gao
,
B. L.
, and
Malek
,
A. M.
,
2010
, “
Aneurysm Inflow-Angle as a Discriminant For Rupture in Sidewall Cerebral Aneurysms Morphometric and Computational Fluid Dynamic Analysis
,”
Stroke
,
41
(
7
), pp.
1423
1430
.
20.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Burgess
,
J. E.
,
Pergolizzi
,
R. S.
,
Sheridan
,
M. J.
, and
Putman
,
C. M.
,
2005
, “
Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models
,”
Am. J. Neuroradiol.
,
26
(
10
), pp.
2550
2559
.
21.
Wardlaw
,
J. M.
, and
White
,
P. M.
,
2000
, “
The Detection and Management of Unruptured Intracranial Aneurysms
,”
Brain
,
123
(
2
), pp.
205
221
.
22.
Brisman
,
J. L.
,
Song
,
J. K.
, and
Newell
,
D. W.
,
2006
, “
Cerebral Aneurysms
,”
N. Engl. J. Med.
,
355
(
9
), pp.
928
939
.
23.
Loewenstein
,
J. E.
,
Gayle
,
S. C.
,
Duffis
,
E. J.
,
Prestigiacomo
,
C. J.
, and
Gandhi
,
C. D.
,
2012
, “
The Natural History and Treatment Options for Unruptured Intracranial Aneurysms
,”
Int. J. Vasc. Med.
,
2012
, p.
898052
.
24.
van Eijck
,
M.
,
Bechan
,
R. S.
,
Sluzewski
,
M.
,
Peluso
,
J. P.
,
Roks
,
G.
, and
van Rooij
,
W. J.
, “
Clinical and Imaging Follow-Up of Patients With Coiled Basilar Tip Aneurysms Up to 20 Years
,”
Am. J. Neuroradiol.
,
36
(
11
), pp.
2108
2113
.
25.
Vallée
,
J. N.
,
Aymard
,
A.
,
Vicaut
,
E.
,
Reis
,
M.
, and
Merland
,
J. J.
,
2003
, “
Endovascular Treatment of Basilar Tip Aneurysms With Guglielmi Detachable Coils: Predictors of Immediate and Long-term Results with Multivariate Analysis—6-year Experience1
,”
Radiology
,
226
(
3
), pp.
867
879
.
26.
Jou
,
L. D.
,
Mohamed
,
A.
,
Lee
,
D. H.
, and
Mawad
,
M. E.
,
2007
, “
3D Rotational Digital Subtraction Angiography May Underestimate Intracranial Aneurysms: Findings From Two Basilar Aneurysms
,”
Am. J. Neuroradiol.
,
28
(
9
), pp.
1690
1692
.
27.
Babiker
,
M. H.
,
Chong
,
B.
,
Gonzalez
,
L. F.
,
Cheema
,
S.
, and
Frakes
,
D. H.
,
2013
, “
Finite Element Modeling of Embolic Coil Deployment: Multifactor Characterization of Treatment Effects on Cerebral Aneurysm Hemodynamics
,”
J. Biomech.
,
46
(
16
), pp.
2809
2816
.
28.
Ford
,
M. D.
,
Alperin
,
N.
,
Lee
,
S. H.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2005
, “
Characterization of Volumetric Flow Rate Waveforms in the Normal Internal Carotid and Vertebral Arteries
,”
Physiol. Meas.
,
26
(
4
), pp.
477
488
.
29.
Rhew
,
R. D.
, and
Parker
,
P. A.
,
2007
, “
A Parametric Geometry Computational Fluid Dynamics (CFD) Study Utilizing Design of Experiments (DOE)
,”
U.S. Air Force T&E Days
, Destin, FL, Feb. 13–15,
AIAA
Paper No. 2007-1615.
30.
Taylor
,
R.
,
1990
, “
Interpretation of the Correlation Coefficient: A Basic Review
,”
J. Diag. Med. Sonography
,
6
(
1
), pp.
35
39
.
31.
Lecler
,
A.
,
Raymond
,
J.
,
Rodriguez-Régent
,
C.
,
Al Shareef
,
F.
,
Trystram
,
D.
,
Godon-Hardy
,
S.
,
Hassen
,
W. B.
,
Meder
,
J. F.
,
Oppenheim
,
C.
, and
Naggara
,
O. N.
,
2015
, “
Intracranial Aneurysms: Recurrences More Than 10 Years After Endovascular Treatment—A Prospective Cohort Study, Systematic Review, and Meta-Analysis
,”
Radiology
,
277
(
1
), pp.
173
180
.
32.
Boogaarts
,
H. D.
,
van Lieshout
,
J. H.
,
van Amerongen
,
M. J.
,
de Vries
,
J.
,
Verbeek
,
A. L.
,
Grotenhuis
,
J. A.
,
Westert
,
G. P.
, and
Bartels
,
R. H.
,
2015
, “
Aneurysm Diameter as a Risk Factor for Pretreatment Rebleeding: A Meta-Analysis
,”
J. Neurosurg.
,
122
(
4
), pp.
921
928
.
33.
Roszelle
,
B. N.
,
Gonzalez
,
L. F.
,
Babiker
,
M. H.
,
Ryan
,
J.
,
Albuquerque
,
F. C.
, and
Frakes
,
D. H.
,
2013
, “
Flow Diverter Effect on Cerebral Aneurysm Hemodynamics: An In Vitro Comparison of Telescoping Stents and the Pipeline
,”
Neuroradiology
,
55
(
6
), pp.
751
758
.
34.
Babiker
,
M.
,
Gonzalez
,
L. F.
,
Albuquerque
,
F.
,
Collins
,
D.
,
Elvikis
,
A.
,
Zwart
,
C.
,
Roszelle
,
B.
, and
Frakes
,
D. H.
,
2013
, “
An In Vitro Study of Pulsatile Fluid Dynamics in Intracranial Aneurysm Models Treated With Embolic Coils And Flow Diverters
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
1150
1159
.
35.
Roszelle
,
B. N.
,
Nair
,
P.
,
Gonzalez
,
L. F.
,
Babiker
,
M. H.
,
Ryan
,
J.
, and
Frakes
,
D.
,
2014
, “
Comparison Among Different High Porosity Stent Configurations: Hemodynamic Effects of Treatment in a Large Cerebral Aneurysm
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021013
.
36.
Marsden
,
A. L.
, and
Esmaily-Moghadam
,
M.
,
2015
, “
Multiscale Modeling of Cardiovascular Flows for Clinical Decision Support
,”
ASME Appl. Mech. Rev.
,
67
(
3
), p.
030804
.
37.
Cebral
,
J. R.
,
Castro
,
M.
,
Appanaboyina
,
S.
,
Putman
,
C. M.
,
Millan
,
D.
, and
Frangi
,
A. F.
,
2005
, “
Efficient Pipeline for Image-Based Patient-Specific Analysis of Cerebral Aneurysm Hemodynamics: Technique and Sensitivity
,”
IEEE Trans. Med. Imaging
,
24
(
4
), pp.
457
467
.
38.
Valencia
,
A.
,
Zarate
,
A.
,
Galvez
,
M.
, and
Badilla
,
L.
,
2006
, “
Non-Newtonian Blood Flow Dynamics in a Right Internal Carotid Artery With a Saccular Aneurysm
,”
Int. J. Numer. Methods Fluids
,
50
(
6
), pp.
751
764
.
You do not currently have access to this content.