There is currently a lack of clinically available solutions to restore functionality to the intervertebral disk (IVD) following herniation injury to the annulus fibrosus (AF). Microdiscectomy is a commonly performed surgical procedure to alleviate pain caused by herniation; however, AF defects remain and can lead to accelerated degeneration and painful conditions. Currently available AF closure techniques do not restore mechanical functionality or promote tissue regeneration, and have risk of reherniation. This review determined quantitative design requirements for AF repair materials and summarized currently available hydrogels capable of meeting these design requirements by using a series of systematic PubMed database searches to yield 1500+ papers that were screened and analyzed for relevance to human lumbar in vivo measurements, motion segment behaviors, and tissue level properties. We propose a testing paradigm involving screening tests as well as more involved in situ and in vivo validation tests to efficiently identify promising biomaterials for AF repair. We suggest that successful materials must have high adhesion strength (∼0.2 MPa), match as many AF material properties as possible (e.g., approximately 1 MPa, 0. 3 MPa, and 30 MPa for compressive, shear, and tensile moduli, respectively), and have high tensile failure strain (∼65%) to advance to in situ and in vivo validation tests. While many biomaterials exist for AF repair, few undergo extensive mechanical characterization. A few hydrogels show promise for AF repair since they can match at least one material property of the AF while also adhering to AF tissue and are capable of easy implantation during surgical procedures to warrant additional optimization and validation.

References

References
1.
Vos
,
T.
,
Flaxman
,
A. D.
,
Naghavi
,
M.
,
Lozano
,
R.
,
Michaud
,
C.
,
Ezzati
,
M.
,
Shibuya
,
K.
,
Salomon
,
J. A.
,
Abdalla
,
S.
,
Aboyans
,
V.
,
Abraham
,
J.
,
Ackerman
,
I.
,
Aggarwal
,
R.
,
Ahn
,
S. Y.
,
Ali
,
M. K.
,
AlMazroa
,
M. A.
,
Alvarado
,
M.
,
Anderson
,
H. R.
,
Anderson
,
L. M.
,
Andrews
,
K. G.
,
Atkinson
,
C.
,
Baddour
,
L. M.
,
Bahalim
,
A. N.
,
Barker-Collo
,
S.
,
Barrero
,
L. H.
,
Bartels
,
D. H.
,
Basáñez
,
M.-G.
,
Baxter
,
A.
,
Bell
,
M. L.
,
Benjamin
,
E. J.
,
Bennett
,
D.
,
Bernabé
,
E.
,
Bhalla
,
K.
,
Bhandari
,
B.
,
Bikbov
,
B.
,
Abdulhak
,
A. B.
,
Birbeck
,
G.
,
Black
,
J. A.
,
Blencowe
,
H.
,
Blore
,
J. D.
,
Blyth
,
F.
,
Bolliger
,
I.
,
Bonaventure
,
A.
,
Boufous
,
S.
,
Bourne
,
R.
,
Boussinesq
,
M.
,
Braithwaite
,
T.
,
Brayne
,
C.
,
Bridgett
,
L.
,
Brooker
,
S.
,
Brooks
,
P.
,
Brugha
,
T. S.
,
Bryan-Hancock
,
C.
,
Bucello
,
C.
,
Buchbinder
,
R.
,
Buckle
,
G.
,
Budke
,
C. M.
,
Burch
,
M.
,
Burney
,
P.
,
Burstein
,
R.
,
Calabria
,
B.
,
Campbell
,
B.
,
Canter
,
C. E.
,
Carabin
,
H.
,
Carapetis
,
J.
,
Carmona
,
L.
,
Cella
,
C.
,
Charlson
,
F.
,
Chen
,
H.
,
Cheng
,
A. T.-A.
,
Chou
,
D.
,
Chugh
,
S. S.
,
Coffeng
,
L. E.
,
Colan
,
S. D.
,
Colquhoun
,
S.
,
Colson
,
K. E.
,
Condon
,
J.
,
Connor
,
M. D.
,
Cooper
,
L. T.
,
Corriere
,
M.
,
Cortinovis
,
M.
,
Courville de Vaccaro
,
K.
,
Couser
,
W.
,
Cowie
,
B. C.
,
Criqui
,
M. H.
,
Cross
,
M.
,
Dabhadkar
,
K. C.
,
Dahiya
,
M.
,
Dahodwala
,
N.
,
Damsere-Derry
,
J.
,
Danaei
,
G.
,
Davis
,
A.
,
De Leo
,
D.
,
Degenhardt
,
L.
,
Dellavalle
,
R.
,
Delossantos
,
A.
,
Denenberg
,
J.
,
Derrett
,
S.
,
Des Jarlais
,
D. C.
,
Dharmaratne
,
S. D.
,
Dherani
,
M.
,
Diaz-Torne
,
C.
,
Dolk
,
H.
,
Dorsey
,
E. R.
,
Driscoll
,
T.
,
Duber
,
H.
,
Ebel
,
B.
,
Edmond
,
K.
,
Elbaz
,
A.
,
Eltahir Ali
,
S.
,
Erskine
,
H.
,
Erwin
,
P. J.
,
Espindola
,
P.
,
Ewoigbokhan
,
S. E.
,
Farzadfar
,
F.
,
Feigin
,
V.
,
Felson
,
D. T.
,
Ferrari
,
A.
,
Ferri
,
C. P.
,
Fèvre
,
E. M.
,
Finucane
,
M. M.
,
Flaxman
,
S.
,
Flood
,
L.
,
Foreman
,
K.
,
Forouzanfar
,
M. H.
,
Fowkes
,
F. G. R.
,
Franklin
,
R.
,
Fransen
,
M.
,
Freeman
,
M. K.
,
Gabbe
,
B. J.
,
Gabriel
,
S. E.
,
Gakidou
,
E.
,
Ganatra
,
H. A.
,
Garcia
,
B.
,
Gaspari
,
F.
,
Gillum
,
R. F.
,
Gmel
,
G.
,
Gosselin
,
R.
,
Grainger
,
R.
,
Groeger
,
J.
,
Guillemin
,
F.
,
Gunnell
,
D.
,
Gupta
,
R.
,
Haagsma
,
J.
,
Hagan
,
H.
,
Halasa
,
Y. A.
,
Hall
,
W.
,
Haring
,
D.
,
Haro
,
J. M.
,
Harrison
,
J. E.
,
Havmoeller
,
R.
,
Hay
,
R. J.
,
Higashi
,
H.
,
Hill
,
C.
,
Hoen
,
B.
,
Hoffman
,
H.
,
Hotez
,
P. J.
,
Hoy
,
D.
,
Huang
,
J. J.
,
Ibeanusi
,
S. E.
,
Jacobsen
,
K. H.
,
James
,
S. L.
,
Jarvis
,
D.
,
Jasrasaria
,
R.
,
Jayaraman
,
S.
,
Johns
,
N.
,
Jonas
,
J. B.
,
Karthikeyan
,
G.
,
Kassebaum
,
N.
,
Kawakami
,
N.
,
Keren
,
A.
,
Khoo
,
J.-P.
,
King
,
C. H.
,
Knowlton
,
L. M.
,
Kobusingye
,
O.
,
Koranteng
,
A.
,
Krishnamurthi
,
R.
,
Lalloo
,
R.
,
Laslett
,
L. L.
,
Lathlean
,
T.
,
Leasher
,
J. L.
,
Lee
,
Y. Y.
,
Leigh
,
J.
,
Lim
,
S. S.
,
Limb
,
E.
,
Lin
,
J. K.
,
Lipnick
,
M.
,
Lipshultz
,
S. E.
,
Liu
,
W.
,
Loane
,
M.
,
Lockett Ohno
,
S.
,
Lyons
,
R.
,
Ma
,
J.
,
Mabweijano
,
J.
,
MacIntyre
,
M. F.
,
Malekzadeh
,
R.
,
Mallinger
,
L.
,
Manivannan
,
S.
,
Marcenes
,
W.
,
March
,
L.
,
Margolis
,
D. J.
,
Marks
,
G. B.
,
Marks
,
R.
,
Matsumori
,
A.
,
Matzopoulos
,
R.
,
Mayosi
,
B. M.
,
McAnulty
,
J. H.
,
McDermott
,
M. M.
,
McGill
,
N.
,
McGrath
,
J.
,
Medina-Mora
,
M. E.
,
Meltzer
,
M.
,
Memish
,
Z. A.
,
Mensah
,
G. A.
,
Merriman
,
T. R.
,
Meyer
,
A.-C.
,
Miglioli
,
V.
,
Miller
,
M.
,
Miller
,
T. R.
,
Mitchell
,
P. B.
,
Mocumbi
,
A. O.
,
Moffitt
,
T. E.
,
Mokdad
,
A. A.
,
Monasta
,
L.
,
Montico
,
M.
,
Moradi-Lakeh
,
M.
,
Moran
,
A.
,
Morawska
,
L.
,
Mori
,
R.
,
Murdoch
,
M. E.
,
Mwaniki
,
M. K.
,
Naidoo
,
K.
,
Nair
,
M. N.
,
Naldi
,
L.
,
Narayan
,
K. M. V.
,
Nelson
,
P. K.
,
Nelson
,
R. G.
,
Nevitt
,
M. C.
,
Newton
,
C. R.
,
Nolte
,
S.
,
Norman
,
P.
,
Norman
,
R.
, O'
Donnell
,
M.
, O'
Hanlon
,
S.
,
Olives
,
C.
,
Omer
,
S. B.
,
Ortblad
,
K.
,
Osborne
,
R.
,
Ozgediz
,
D.
,
Page
,
A.
,
Pahari
,
B.
,
Pandian
,
J. D.
,
Panozo Rivero
,
A.
,
Patten
,
S. B.
,
Pearce
,
N.
,
Perez Padilla
,
R.
,
Perez-Ruiz
,
F.
,
Perico
,
N.
,
Pesudovs
,
K.
,
Phillips
,
D.
,
Phillips
,
M. R.
,
Pierce
,
K.
,
Pion
,
S.
,
Polanczyk
,
G. V.
,
Polinder
,
S.
,
Pope III
,
C. A.
,
Popova
,
S.
,
Porrini
,
E.
,
Pourmalek
,
F.
,
Prince
,
M.
,
Pullan
,
R. L.
,
Ramaiah
,
K. D.
,
Ranganathan
,
D.
,
Razavi
,
H.
,
Regan
,
M.
,
Rehm
,
J. T.
,
Rein
,
D. B.
,
Remuzzi
,
G.
,
Richardson
,
K.
,
Rivara
,
F. P.
,
Roberts
,
T.
,
Robinson
,
C.
,
Rodriguez De Leòn
,
F.
,
Ronfani
,
L.
,
Room
,
R.
,
Rosenfeld
,
L. C.
,
Rushton
,
L.
,
Sacco
,
R. L.
,
Saha
,
S.
,
Sampson
,
U.
,
Sanchez-Riera
,
L.
,
Sanman
,
E.
,
Schwebel
,
D. C.
,
Scott
,
J. G.
,
Segui-Gomez
,
M.
,
Shahraz
,
S.
,
Shepard
,
D. S.
,
Shin
,
H.
,
Shivakoti
,
R.
,
Silberberg
,
D.
,
Singh
,
D.
,
Singh
,
G. M.
,
Singh
,
J. A.
,
Singleton
,
J.
,
Sleet
,
D. A.
,
Sliwa
,
K.
,
Smith
,
E.
,
Smith
,
J. L.
,
Stapelberg
,
N. J. C.
,
Steer
,
A.
,
Steiner
,
T.
,
Stolk
,
W. A.
,
Stovner
,
L. J.
,
Sudfeld
,
C.
,
Syed
,
S.
,
Tamburlini
,
G.
,
Tavakkoli
,
M.
,
Taylor
,
H. R.
,
Taylor
,
J. A.
,
Taylor
,
W. J.
,
Thomas
,
B.
,
Thomson
,
W. M.
,
Thurston
,
G. D.
,
Tleyjeh
,
I. M.
,
Tonelli
,
M.
,
Towbin
,
J. A.
,
Truelsen
,
T.
,
Tsilimbaris
,
M. K.
,
Ubeda
,
C.
,
Undurraga
,
E. A.
,
van der Werf
,
M. J.
,
van Os
,
J.
,
Vavilala
,
M. S.
,
Venketasubramanian
,
N.
,
Wang
,
M.
,
Wang
,
W.
,
Watt
,
K.
,
Weatherall
,
D. J.
,
Weinstock
,
M. A.
,
Weintraub
,
R.
,
Weisskopf
,
M. G.
,
Weissman
,
M. M.
,
White
,
R. A.
,
Whiteford
,
H.
,
Wiersma
,
S. T.
,
Wilkinson
,
J. D.
,
Williams
,
H. C.
,
Williams
,
S. R. M.
,
Witt
,
E.
,
Wolfe
,
F.
,
Woolf
,
A. D.
,
Wulf
,
S.
,
Yeh
,
P.-H.
,
Zaidi
,
A. K. M.
,
Zheng
,
Z.-J.
,
Zonies
,
D.
,
Lopez
,
A. D.
, and
Murray
,
C. J. L.
,
2012
, “
Years Lived With Disability (YLDs) for 1160 Sequelae of 289 Diseases and Injuries 1990–2010: A Systematic Analysis for the Global Burden of Disease Study 2010
,”
Lancet
,
380
(
9859
), pp.
2163
2196
.
2.
March
,
L.
,
Smith
,
E. U. R.
,
Hoy
,
D. G.
,
Cross
,
M. J.
,
Sanchez-Riera
,
L.
,
Blyth
,
F.
,
Buchbinder
,
R.
,
Vos
,
T.
, and
Woolf
,
A. D.
,
2014
, “
Burden of Disability Due to Musculoskeletal (MSK) Disorders
,”
Best Pract. Res. Clin. Rheumatol.
,
28
(
3
), pp.
353
366
.
3.
Weinstein
,
J. N.
,
Lurie
,
J. D.
,
Tosteson
,
T. D.
,
Skinner
,
J. S.
,
Hanscom
,
B.
,
Tosteson
,
A. N. A.
,
Herkowitz
,
H.
,
Fischgrund
,
J.
,
Cammisa
,
F. P.
,
Albert
,
T.
, and
Deyo
,
R. A.
,
2006
, “
Surgical versus Nonoperative Treatment for Lumbar Disk Herniation: The Spine Patient Outcomes Research Trial (SPORT) Observational Cohort
,”
JAMA
,
296
(
20
), pp.
2451
2459
.
4.
Weinstein
,
J. N.
,
Lurie
,
J. D.
,
Tosteson
,
T. D.
,
Tosteson
,
A. N. A.
,
Blood
,
E. A.
,
Abdu
,
W. A.
,
Herkowitz
,
H.
,
Hilibrand
,
A.
,
Albert
,
T.
, and
Fischgrund
,
J.
,
2008
, “
Surgical Versus Nonoperative Treatment for Lumbar Disc Herniation: Four-Year Results for the Spine Patient Outcomes Research Trial (SPORT)
,”
Spine
,
33
(
25
), pp.
2789
2800
.
5.
Asch
,
H. L.
,
Lewis
,
P. J.
,
Moreland
,
D. B.
,
Egnatchik
,
J. G.
,
Yu
,
Y. J.
,
Clabeaux
,
D. E.
, and
Hyland
,
A. H.
,
2002
, “
Prospective Multiple Outcomes Study of Outpatient Lumbar Microdiscectomy: Should 75 to 80% Success Rates be the Norm?
,”
J. Neurosurg.
,
96
(
1 Suppl.
), pp.
34
44
.
6.
Gray
,
D. T.
,
Deyo
,
R. A.
,
Kreuter
,
W.
,
Mirza
,
S. K.
,
Heagerty
,
P. J.
,
Comstock
,
B. A.
, and
Chan
,
L.
,
2006
, “
Population-Based Trends in Volumes and Rates of Ambulatory Lumbar Spine Surgery
,”
Spine
,
31
(
17
), pp.
1957
1964
.
7.
McGirt
,
M. J.
,
Eustacchio
,
S.
,
Varga
,
P.
,
Vilendecic
,
M.
,
Trummer
,
M.
,
Gorensek
,
M.
,
Ledic
,
D.
, and
Carragee
,
E. J.
,
2009
, “
A Prospective Cohort Study of Close Interval Computed Tomography and Magnetic Resonance Imaging After Primary Lumbar Discectomy: Factors Associated With Recurrent Disc Herniation and Disc Height Loss
,”
Spine
,
34
(
19
), pp.
2044
2051
.
8.
Watters
,
W. C.
, and
McGirt
,
M. J.
,
2009
, “
An Evidence-Based Review of the Literature on the Consequences of Conservative Versus Aggressive Discectomy for the Treatment of Primary Disc Herniation With Radiculopathy
,”
Spine J.
,
9
(
3
), pp.
240
257
.
9.
Ambrossi
,
G. L. G.
,
McGirt
,
M. J.
,
Sciubba
,
D. M.
,
Witham
,
T. F.
,
Wolinsky
,
J.-P.
,
Gokaslan
,
Z. L.
, and
Long
,
D. M.
,
2009
, “
Recurrent Lumbar Disc Herniation After Single-Level Lumbar Discectomy
,”
Neurosurgery
,
65
(
3
), pp.
574
578
.
10.
Iatridis
,
J. C.
,
MacLean
,
J. J.
,
Roughley
,
P. J.
, and
Alini
,
M.
,
2006
, “
Effects of Mechanical Loading on Intervertebral Disc Metabolism In Vivo
,”
J. Bone Joint Surg. Am.
,
88
(
Suppl. 2
), pp.
41
46
.
11.
Elliott
,
D. M.
,
Yerramalli
,
C. S.
,
Beckstein
,
J. C.
,
Boxberger
,
J. I.
,
Johannessen
,
W.
, and
Vresilovic
,
E. J.
,
2008
, “
The Effect of Relative Needle Diameter in Puncture and Sham Injection Animal Models of Degeneration
,”
Spine
,
33
(
6
), pp.
588
596
.
12.
Iatridis
,
J. C.
,
Nicoll
,
S. B.
,
Michalek
,
A. J.
,
Walter
,
B. A.
, and
Gupta
,
M. S.
,
2013
, “
Role of Biomechanics in Intervertebral Disc Degeneration and Regenerative Therapies: What Needs Repairing in the Disc and What are Promising Biomaterials for its Repair?
,”
Spine J.
,
13
(
3
), pp.
243
262
.
13.
Michalek
,
A. J.
, and
Iatridis
,
J. C.
,
2012
, “
Height and Torsional Stiffness are Most Sensitive to Annular Injury in Large Animal Intervertebral Discs
,”
Spine J.
,
12
(
5
), pp.
425
432
.
14.
Masuda
,
K.
,
Aota
,
Y.
,
Muehleman
,
C.
,
Imai
,
Y.
,
Okuma
,
M.
,
Thonar
,
E. J.
,
Andersson
,
G. B.
, and
An
,
H. S.
,
2005
, “
A Novel Rabbit Model of Mild, Reproducible Disc Degeneration by an Anulus Needle Puncture: Correlation Between the Degree of Disc Injury and Radiological and Histological Appearances of Disc Degeneration
,”
Spine
,
30
(
1
), pp.
5
14
.
15.
Melrose
,
J.
,
Roberts
,
S.
,
Smith
,
S.
,
Menage
,
J.
, and
Ghosh
,
P.
,
2002
, “
Increased Nerve and Blood Vessel Ingrowth Associated With Proteoglycan Depletion in an Ovine Anular Lesion Model of Experimental Disc Degeneration
,”
Spine
,
27
(
12
), pp.
1278
1285
.
16.
Freemont
,
A. J.
,
Peacock
,
T. E.
,
Goupille
,
P.
,
Hoyland
,
J. A.
,
O'Brien
,
J.
, and
Jayson
,
M. I.
,
1997
, “
Nerve Ingrowth Into Diseased Intervertebral Disc in Chronic Back Pain
,”
Lancet
,
350
(
9072
), pp.
178
181
.
17.
Ahlgren
,
B. D.
,
Lui
,
W.
,
Herkowitz
,
H. N.
,
Panjabi
,
M. M.
, and
Guiboux
,
J. P.
,
2000
, “
Effect of Anular Repair on the Healing Strength of the Intervertebral Disc: A Sheep Model
,”
Spine
,
25
(
17
), pp.
2165
2170
.
18.
Bailey
,
A.
,
Araghi
,
A.
,
Blumenthal
,
S.
, and
Huffmon
,
G. V.
,
2013
, “
Prospective, Multicenter, Randomized, Controlled Study of Anular Repair in Lumbar Discectomy
,”
Spine
,
38
(
14
), pp.
1161
1169
.
19.
Lequin
,
M. B.
,
Barth
,
M.
,
Thomé
,
C.
, and
Bouma
,
G. J.
,
2012
, “
Primary Limited Lumbar Discectomy With an Annulus Closure Device: One-Year Clinical and Radiographic Results From a Prospective, Multi-Center Study
,”
Korean J. Spine
,
9
(
4
), pp.
340
347
.
20.
Wilke
,
H.-J.
,
Ressel
,
L.
,
Heuer
,
F.
,
Graf
,
N.
, and
Rath
,
S.
,
2013
, “
Can Prevention of a Reherniation be Investigated? Establishment of a Herniation Model and Experiments With an Anular Closure Device
,”
Spine
,
38
(
10
), pp.
E587
E593
.
21.
Trummer
,
M.
,
Eustacchio
,
S.
,
Barth
,
M.
,
Klassen
,
P. D.
, and
Stein
,
S.
,
2013
, “
Protecting Facet Joints Post-Lumbar Discectomy: Barricaid Annular Closure Device Reduces Risk of Facet Degeneration
,”
Clin. Neurol. Neurosurg.
,
115
(
8
), pp.
1440
1445
.
22.
Masuda
,
K.
, and
Lotz
,
J. C.
,
2010
, “
New Challenges for Intervertebral Disc Treatment Using Regenerative Medicine
,”
Tissue Eng. Part B: Rev.
,
16
(
1
), pp.
147
158
.
23.
Sakai
,
D.
, and
Andersson
,
G. B. J.
,
2015
, “
Stem Cell Therapy for Intervertebral Disc Regeneration: Obstacles and Solutions
,”
Nat. Rev. Rheumatol.
,
11
(
4
), pp.
243
256
.
24.
Guterl
,
C. C.
,
See
,
E. Y.
,
Blanquer
,
S. B. G.
,
Pandit
,
A.
,
Ferguson
,
S. J.
,
Benneker
,
L. M.
,
Grijpma
,
D. W.
,
Sakai
,
D.
,
Eglin
,
D.
,
Alini
,
M.
,
Iatridis
,
J. C.
, and
Grad
,
S.
,
2013
, “
Challenges and Strategies in the Repair of Ruptured Annulus Fibrosus
,”
Eur. Cell Mater.
,
25
, pp.
1
21
.
25.
Kandel
,
R.
,
Roberts
,
S.
, and
Urban
,
J. P. G.
,
2008
, “
Tissue Engineering and the Intervertebral Disc: The Challenges
,”
Eur. Spine J.
,
17
(
S4
), pp.
480
491
.
26.
Nerurkar
,
N. L.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2010
, “
Mechanical Design Criteria for Intervertebral Disc Tissue Engineering
,”
J. Biomech.
,
43
(
6
), pp.
1017
1030
.
27.
Likhitpanichkul
,
M.
,
Dreischarf
,
M.
,
Illien-Junger
,
S.
,
Walter
,
B. A.
,
Nukaga
,
T.
,
Long
,
R. G.
,
Sakai
,
D.
,
Hecht
,
A. C.
, and
Iatridis
,
J. C.
,
2014
, “
Fibrin-Genipin Adhesive Hydrogel for Annulus Fibrosus Repair: Performance Evaluation With Large Animal Organ Culture, In Situ Biomechanics, and In Vivo Degradation Tests
,”
Eur. Cell Mater.
,
28
, pp.
25
38
.
28.
Quinnell
,
R. C.
,
Stockdale
,
H. R.
, and
Willis
,
D. S.
,
1983
, “
Observations of Pressures Within Normal Discs in the Lumbar Spine
,”
Spine
,
8
(
2
), pp.
166
169
.
29.
Nachemson
,
A.
, and
Elfstrom
,
G.
,
1970
, “
Intravital Dynamic Pressure Measurements in Lumbar Discs. A Study of Common Movements, Maneuvers and Exercises
,”
Scand. J. Rehabil. Med. Suppl.
,
1
, pp.
1
40
.
30.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
,
1999
, “
New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
,
24
(
8
), pp.
755
762
.
31.
Sato
,
K.
,
Kikuchi
,
S.
, and
Yonezawa
,
T.
,
1999
, “
In Vivo Intradiscal Pressure Measurement in Healthy Individuals and in Patients With Ongoing Back Problems
,”
Spine
,
24
(
23
), pp.
2468
2474
.
32.
Schultz
,
A.
,
Andersson
,
G.
,
Ortengren
,
R.
,
Haderspeck
,
K.
, and
Nachemson
,
A.
,
1982
, “
Loads on the Lumbar Spine. Validation of a Biomechanical Analysis by Measurements of Intradiscal Pressures and Myoelectric Signals
,”
J. Bone Joint Surg. Am.
,
64
(
5
), pp.
713
720
.
33.
Okushima
,
H.
,
1970
, “
Study on Hydrodynamic Pressure of Lumbar Intervertebral Disc
,”
Nihon Geka Hokan
,
39
(
1
), pp.
45
57
.
34.
Nachemson
,
A.
, and
Morris
,
J. M.
,
1964
, “
In Vivo Measurements of Intradiscal Pressure. Discometry, A Method for the Determination of the Pressure in the Lower Lumbar Discs
,”
J. Bone Joint Surg. Am.
,
46
, pp.
1077
1092
.
35.
Nachemson
,
A.
,
1965
, “
The Effect of Forward Leaning on Lumbar Intradiscal Pressure
,”
Acta Orthop. Scand.
,
35
, pp.
314
328
.
36.
Nachemson
,
A.
,
1966
, “
The Load on Lumbar Disks in Different Positions of the Body
,”
Clin. Orthop. Relat. Res.
,
45
, pp.
107
122
.
37.
Andersson
,
B. J.
, and
Ortengren
,
R.
,
1974
, “
Lumbar Disc Pressure and Myoelectric Back Muscle Activity During Sitting. 3. Studies on a Wheelchair
,”
Scand. J. Rehabil. Med.
,
6
(
3
), pp.
122
127
.
38.
Andersson
,
B. J.
, and
Ortengren
,
R.
,
1974
, “
Lumbar Disc Pressure and Myoelectric Back Muscle Activity During Sitting. II. Studies on an Office Chair
,”
Scand. J. Rehabil. Med.
,
6
(
3
), pp.
115
121
.
39.
Andersson
,
G. B.
,
Ortengren
,
R.
, and
Nachemson
,
A.
,
1977
, “
Intradiskal Pressure, Intra-Abdominal Pressure and Myoelectric Back Muscle Activity Related to Posture and Loading
,”
Clin. Orthop. Relat. Res.
,
129
, pp.
156
164
.
40.
Adams
,
M. A.
, and
Hutton
,
W. C.
,
1980
, “
The Effect of Posture on the Role of the Apophysial Joints in Resisting Intervertebral Compressive Forces
,”
J. Bone Joint Surg. Br.
,
62
(
3
), pp.
358
362
.
41.
Claus
,
A.
,
Hides
,
J.
,
Moseley
,
G. L.
, and
Hodges
,
P.
,
2008
, “
Sitting Versus Standing: Does the Intradiscal Pressure Cause Disc Degeneration or Low Back Pain?
,”
J. Electromyogr. Kinesiol.
,
18
(
4
), pp.
550
558
.
42.
Nachemson
,
A.
,
1960
, “
Lumbar Intradiscal Pressure. Experimental Studies on Post-Mortem Material
,”
Acta Orthop. Scand. Suppl.
,
43
, pp.
1
104
.
43.
Merriam
,
W. F.
,
Quinnell
,
R. C.
,
Stockdale
,
H. R.
, and
Willis
,
D. S.
,
1984
, “
The Effect of Postural Changes on the Inferred Pressures Within the Nucleus Pulposus During Lumbar Discography
,”
Spine
,
9
(
4
), pp.
405
408
.
44.
Pearcy
,
M.
,
Portek
,
I.
, and
Shepherd
,
J.
,
1984
, “
Three-Dimensional X-Ray Analysis of Normal Movement in the Lumbar Spine
,”
Spine
,
9
(
3
), pp.
294
297
.
45.
Pearcy
,
M. J.
, and
Tibrewal
,
S. B.
,
1984
, “
Axial Rotation and Lateral Bending in the Normal Lumbar Spine Measured by Three-Dimensional Radiography
,”
Spine
,
9
(
6
), pp.
582
587
.
46.
Lee
,
S.-H.
,
Daffner
,
S. D.
, and
Wang
,
J. C.
,
2014
, “
Does Lumbar Disk Degeneration Increase Segmental Mobility In Vivo? Segmental Motion Analysis of the Whole Lumbar Spine Using Kinetic MRI
,”
J. Spinal Disord. Tech.
,
27
(
2
), pp.
111
116
.
47.
Nagel
,
T. M.
,
Zitnay
,
J. L.
,
Barocas
,
V. H.
, and
Nuckley
,
D. J.
,
2014
, “
Quantification of Continuous In Vivo Flexion–Extension Kinematics and Intervertebral Strains
,”
Eur. Spine J.
,
23
(
4
), pp.
754
761
.
48.
Nagel
,
T. M.
,
Hadi
,
M. F.
,
Claeson
,
A. A.
,
Nuckley
,
D. J.
, and
Barocas
,
V. H.
,
2014
, “
Combining Displacement Field and Grip Force Information to Determine Mechanical Properties of Planar Tissue With Complicated Geometry
,”
ASME J. Biomech. Eng.
,
136
(
11
), p.
114501
.
49.
Kanayama
,
M.
,
Tadano
,
S.
,
Kaneda
,
K.
,
Ukai
,
T.
,
Abumi
,
K.
, and
Ito
,
M.
,
1995
, “
A Cineradiographic Study on the Lumbar Disc Deformation During Flexion and Extension of the Trunk
,”
Clin. Biomech. (Bristol, Avon)
,
10
(
4
), pp.
193
199
.
50.
Zhong
,
W.
,
Driscoll
,
S. J.
,
Wu
,
M.
,
Wang
,
S.
,
Liu
,
Z.
,
Cha
,
T. D.
,
Wood
,
K. B.
, and
Li
,
G.
,
2014
, “
In Vivo Morphological Features of Human Lumbar Discs
,”
Medicine
,
93
(
28
), p.
e333
.
51.
Pearcy
,
M. J.
, and
Tibrewal
,
S. B.
,
1984
, “
Lumbar Intervertebral Disc and Ligament Deformations Measured In Vivo
,”
Clin. Orthop. Relat. Res.
,
191
, pp.
281
286
.
52.
Aiyangar
,
A. K.
,
Zheng
,
L.
,
Tashman
,
S.
,
Anderst
,
W. J.
, and
Zhang
,
X.
,
2014
, “
Capturing Three-Dimensional In Vivo Lumbar Intervertebral Joint Kinematics Using Dynamic Stereo-X-Ray Imaging
,”
ASME J. Biomech. Eng.
,
136
(
1
), p.
011004
.
53.
Miao
,
J.
,
Wang
,
S.
,
Wan
,
Z.
,
Park
,
W. M.
,
Xia
,
Q.
,
Wood
,
K.
, and
Li
,
G.
,
2013
, “
Motion Characteristics of the Vertebral Segments With Lumbar Degenerative Spondylolisthesis in Elderly Patients
,”
Eur. Spine J.
,
22
(
2
), pp.
425
431
.
54.
Stokes
,
I. A.
, and
Frymoyer
,
J. W.
,
1987
, “
Segmental Motion and Instability
,”
Lumbar Intradiscal Pressure: Experimental Studies on Post-Mortem Material
,
12
(
7
), pp.
688
691
.
55.
Li
,
G.
,
Wang
,
S.
,
Passias
,
P.
,
Xia
,
Q.
,
Li
,
G.
, and
Wood
,
K.
,
2009
, “
Segmental In Vivo Vertebral Motion During Functional Human Lumbar Spine Activities
,”
Eur. Spine J.
,
18
(
7
), pp.
1013
1021
.
56.
Xia
,
Q.
,
Wang
,
S.
,
Kozanek
,
M.
,
Passias
,
P.
,
Wood
,
K.
, and
Li
,
G.
,
2010
, “
In-Vivo Motion Characteristics of Lumbar Vertebrae in Sagittal and Transverse Planes
,”
J. Biomech.
,
43
(
10
), pp.
1905
1909
.
57.
Wang
,
S.
,
Xia
,
Q.
,
Passias
,
P.
,
Li
,
W.
,
Wood
,
K.
, and
Li
,
G.
,
2011
, “
How Does Lumbar Degenerative Disc Disease Affect the Disc Deformation at the Cephalic Levels In Vivo?
,”
Spine
,
36
(
9
), pp.
E574
E581
.
58.
Yoder
,
J. H.
,
Peloquin
,
J. M.
,
Song
,
G.
,
Tustison
,
N. J.
,
Moon
,
S. M.
,
Wright
,
A. C.
,
Vresilovic
,
E. J.
,
Gee
,
J. C.
, and
Elliott
,
D. M.
,
2014
, “
Internal Three-Dimensional Strains in Human Intervertebral Discs Under Axial Compression Quantified Noninvasively by Magnetic Resonance Imaging and Image Registration
,”
ASME J. Biomech. Eng.
,
136
(
11
), p.
111008
.
59.
Stokes
,
I. A.
,
1987
, “
Surface Strain on Human Intervertebral Discs
,”
J. Orthop. Res.
,
5
(
3
), pp.
348
355
.
60.
Nachemson
,
A. L.
,
Schultz
,
A. B.
, and
Berkson
,
M. H.
,
1979
, “
Mechanical Properties of Human Lumbar Spine Motion Segments. Influence of Age, Sex, Disc Level, and Degeneration
,”
Spine
,
4
(
1
), pp.
1
8
.
61.
Shea
,
M.
,
Takeuchi
,
T. Y.
,
Wittenberg
,
R. H.
,
White
,
A. A.
, and
Hayes
,
W. C.
,
1994
, “
A Comparison of the Effects of Automated Percutaneous Diskectomy and Conventional Diskectomy on Intradiscal Pressure, Disk Geometry, and Stiffness
,”
J. Spinal Disord.
,
7
(
4
), pp.
317
325
.
62.
Beckstein
,
J. C.
,
Sen
,
S.
,
Schaer
,
T. P.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2008
, “
Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Axial Compression Mechanics and Glycosaminoglycan Content
,”
Spine
,
33
(
6
), pp.
E166
E173
.
63.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A. F.
,
2004
, “
Structural Behavior of Human Lumbar Spinal Motion Segments
,”
J. Biomech.
,
37
(
2
), pp.
205
212
.
64.
Lu
,
W. W.
,
Luk
,
K. D. K.
,
Holmes
,
A. D.
,
Cheung
,
K. M. C.
, and
Leong
,
J. C. Y.
,
2005
, “
Pure Shear Properties of Lumbar Spinal Joints and the Effect of Tissue Sectioning on Load Sharing
,”
Spine
,
30
(
8
), pp.
E204
E209
.
65.
Showalter
,
B. L.
,
Beckstein
,
J. C.
,
Martin
,
J. T.
,
Beattie
,
E. E.
,
Espinoza Orías
,
A. A.
,
Schaer
,
T. P.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2012
, “
Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content
,”
Spine
,
37
(
15
), pp.
E900
E907
.
66.
Thompson
,
R. E.
,
Pearcy
,
M. J.
,
Downing
,
K. J.
,
Manthey
,
B. A.
,
Parkinson
,
I. H.
, and
Fazzalari
,
N. L.
,
2000
, “
Disc Lesions and the Mechanics of the Intervertebral Joint Complex
,”
Spine
,
25
(
23
), pp.
3026
3035
.
67.
Marini
,
G.
,
Huber
,
G.
,
Püschel
,
K.
, and
Ferguson
,
S. J.
,
2015
, “
Nonlinear Dynamics of the Human Lumbar Intervertebral Disc
,”
J. Biomech.
,
48
(
3
), pp.
479
488
.
68.
O'Connell
,
G. D.
,
Jacobs
,
N. T.
,
Sen
,
S.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2011
, “
Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
933
942
.
69.
Landham
,
P. R.
,
Baker-Rand
,
H. L. A.
,
Gilbert
,
S. J.
,
Pollintine
,
P.
,
Annesley-Williams
,
D. J.
,
Adams
,
M. A.
, and
Dolan
,
P.
,
2015
, “
Is kyphoplasty Better Than Vertebroplasty at Restoring Form and Function After Severe Vertebral Wedge Fractures?
,”
Spine J.
,
15
(
4
), pp.
721
732
.
70.
Frei
,
H.
,
Oxland
,
T. R.
, and
Nolte
,
L. P.
,
2002
, “
Thoracolumbar Spine Mechanics Contrasted Under Compression and Shear Loading
,”
J. Orthop. Res.
,
20
(
6
), pp.
1333
1338
.
71.
Okawa
,
A.
,
Shinomiya
,
K.
,
Takakuda
,
K.
, and
Nakai
,
O.
,
1996
, “
A Cadaveric Study on the Stability of Lumbar Segment After Partial Laminotomy and Facetectomy With Intact Posterior Ligaments
,”
J. Spinal Disord.
,
9
(
6
), pp.
518
526
.
72.
McGlashen
,
K. M.
,
Miller
,
J. A.
,
Schultz
,
A. B.
, and
Andersson
,
G. B.
,
1987
, “
Load Displacement Behavior of the Human Lumbo-Sacral Joint
,”
J. Orthop. Res.
,
5
(
4
), pp.
488
496
.
73.
Kiehl
,
K. L.
,
Curry
,
W. H.
,
Stemper
,
B. D.
,
Eckardt
,
G.
,
Basiden
,
J. L.
,
Maiman
,
D. J.
,
Yoganandan
,
N.
, and
Shender
,
B. S.
,
2014
, “
A Method for Inducing and Determining Biomechanics Associated With Endplate Fractures in the Lumbar Spine
,”
Biomed. Sci. Instrum.
,
50
, pp.
119
124
.
74.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A.
,
2003
, “
Physiological Axial Compressive Preloads Increase Motion Segment Stiffness, Linearity and Hysteresis in all Six Degrees of Freedom for Small Displacements About the Neutral Posture
,”
J. Orthop. Res.
,
21
(
3
), pp.
547
552
.
75.
Izambert
,
O.
,
Mitton
,
D.
,
Thourot
,
M.
, and
Lavaste
,
F.
,
2003
, “
Dynamic Stiffness and Damping of Human Intervertebral Disc Using Axial Oscillatory Displacement Under a Free Mass System
,”
Eur. Spine J.
,
12
(
6
), pp.
562
566
.
76.
Costi
,
J. J.
,
Stokes
,
I. A.
,
Gardner-Morse
,
M. G.
, and
Iatridis
,
J. C.
,
2008
, “
Frequency-Dependent Behavior of the Intervertebral Disc in Response to Each of Six Degree of Freedom Dynamic Loading: Solid Phase and Fluid Phase Contributions
,”
Spine
,
33
(
16
), pp.
1731
1738
.
77.
Smeathers
,
J. E.
, and
Joanes
,
D. N.
,
1988
, “
Dynamic Compressive Properties of Human Lumbar Intervertebral Joints: A Comparison Between Fresh and Thawed Specimens
,”
J. Biomech.
,
21
(
5
), pp.
425
433
.
78.
Alkalay
,
R. N.
,
Vader
,
D.
, and
Hackney
,
D.
,
2015
, “
The Degenerative State of the Intervertebral Disk Independently Predicts the Failure of Human Lumbar Spine to High Rate Loading: An Experimental Study
,”
Clin. Biomech. (Bristol, Avon).
,
30
(
2
), pp.
211
218
.
79.
Keller
,
T. S.
,
Spengler
,
D. M.
, and
Hansson
,
T. H.
,
1987
, “
Mechanical Behavior of the Human Lumbar Spine. I. Creep Analysis During Static Compressive Loading
,”
J. Orthop. Res.
,
5
(
4
), pp.
467
478
.
80.
Amin
,
D. B.
,
Lawless
,
I. M.
,
Sommerfeld
,
D.
,
Stanley
,
R. M.
,
Ding
,
B.
, and
Costi
,
J. J.
,
2015
, “
Effect of Potting Technique on the Measurement of Six Degree-of-Freedom Viscoelastic Properties of Human Lumbar Spine Segments
,”
ASME J. Biomech. Eng.
,
137
(
5
), p.
054501
.
81.
Zirbel
,
S. A.
,
Stolworthy
,
D. K.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
,
2013
, “
Intervertebral Disc Degeneration Alters Lumbar Spine Segmental Stiffness in all Modes of Loading Under a Compressive Follower Load
,”
Spine J.
,
13
(
9
), pp.
1134
1147
.
82.
Schmidt
,
T. A.
,
An
,
H. S.
,
Lim
,
T. H.
,
Nowicki
,
B. H.
, and
Haughton
,
V. M.
,
1998
, “
The Stiffness of Lumbar Spinal Motion Segments With a High-Intensity Zone in the Anulus Fibrosus
,”
Spine
,
23
(
20
), pp.
2167
2173
.
83.
Haughton
,
V. M.
,
Lim
,
T. H.
, and
An
,
H.
,
1999
, “
Intervertebral Disk Appearance Correlated With Stiffness of Lumbar Spinal Motion Segments
,”
AJNR Am. J. Neuroradiol.
,
20
(
6
), pp.
1161
1165
.
84.
Garges
,
K. J.
,
Nourbakhsh
,
A.
,
Morris
,
R.
,
Yang
,
J.
,
Mody
,
M.
, and
Patterson
,
R.
,
2008
, “
A Comparison of the Torsional Stiffness of the Lumbar Spine in Flexion and Extension
,”
J. Manipulat. Physiol. Ther.
,
31
(
8
), pp.
1
7
.
85.
Brown
,
M. D.
,
Holmes
,
D. C.
, and
Heiner
,
A. D.
,
2002
, “
Measurement of Cadaver Lumbar Spine Motion Segment Stiffness
,”
Spine
,
27
(
9
), pp.
918
922
.
86.
Miller
,
J. A.
,
Schultz
,
A. B.
,
Warwick
,
D. N.
, and
Spencer
,
D. L.
,
1986
, “
Mechanical Properties of Lumbar Spine Motion Segments Under Large Loads
,”
J. Biomech.
,
19
(
1
), pp.
79
84
.
87.
Bisschop
,
A.
,
Mullender
,
M. G.
,
Kingma
,
I.
,
Jiya
,
T. U.
,
van der Veen
,
A. J.
,
Roos
,
J. C.
,
van Dieën
,
J. H.
, and
van Royen
,
B. J.
,
2011
, “
The Impact of Bone Mineral Density and Disc Degeneration on Shear Strength and Stiffness of the Lumbar Spine Following Laminectomy
,”
Eur. Spine J.
,
21
(
3
), pp.
530
536
.
88.
Bisschop
,
A.
,
van Royen
,
B. J.
,
Mullender
,
M. G.
,
Paul
,
C. P. L.
,
Kingma
,
I.
,
Jiya
,
T. U.
,
van der Veen
,
A. J.
, and
van Dieën
,
J. H.
,
2012
, “
Which Factors Prognosticate Spinal Instability Following Lumbar Laminectomy?
,”
Eur. Spine J.
,
21
(
12
), pp.
2640
2648
.
89.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
(
1
), pp.
75
88
.
90.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1996
, “
Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus
,”
Spine
,
21
(
4
), pp.
452
461
.
91.
Isaacs
,
J. L.
,
Vresilovic
,
E.
,
Sarkar
,
S.
, and
Marcolongo
,
M.
,
2014
, “
Role of Biomolecules on Annulus Fibrosus Micromechanics_ Effect of Enzymatic Digestion on Elastic and Failure Properties
,”
J. Mech. Behav. Biomed. Mater.
,
40
(
C
), pp.
75
84
.
92.
O'Connell
,
G. D.
,
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
2009
, “
Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111007
.
93.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2001
, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
,
123
(
3
), p.
256
.
94.
Shan
,
Z.
,
Li
,
S.
,
Liu
,
J.
,
Mamuti
,
M.
,
Wang
,
C.
, and
Zhao
,
F.
,
2015
, “
Correlation Between Biomechanical Properties of the Annulus Fibrosus and Magnetic Resonance Imaging (MRI) Findings
,”
Eur. Spine J.
,
24
(
9
), pp.
1909
1916
.
95.
O'Connell
,
G. D.
,
Sen
,
S.
, and
Elliott
,
D. M.
,
2012
, “
Human Annulus Fibrosus Material Properties From Biaxial Testing and Constitutive Modeling are Altered With Degeneration
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
493
503
.
96.
Bass
,
E. C.
,
Ashford
,
F. A.
,
Segal
,
M. R.
, and
Lotz
,
J. C.
,
2004
, “
Biaxial Testing of Human Annulus Fibrosus and its Implications for a Constitutive Formulation
,”
Ann. Biomed. Eng.
,
32
(
9
), pp.
1231
1242
.
97.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus
,”
Spine
,
19
(
12
), pp.
1310
1319
.
98.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A. J.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2004
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.
99.
Stemper
,
B. D.
,
Baisden
,
J. L.
,
Yoganandan
,
N.
,
Shender
,
B. S.
, and
Maiman
,
D. J.
,
2014
, “
Mechanical Yield of the Lumbar Annulus: A Possible Contributor to Instability
,”
J. Neurosurg.: Spine
,
21
(
4
), pp.
608
613
.
100.
Acaroglu
,
E. R.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1995
, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Anulus Fibrosus
,”
Spine
,
20
(
24
), pp.
2690
2701
.
101.
Best
,
B. A.
,
Guilak
,
F.
,
Setton
,
L. A.
,
Zhu
,
W.
,
Saed-Nejad
,
F.
,
Ratcliffe
,
A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1994
, “
Compressive Mechanical Properties of the Human Anulus Fibrosus and Their Relationship to Biochemical Composition
,”
Spine
,
19
(
2
), pp.
212
221
.
102.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
,
31
(
6
), pp.
535
544
.
103.
Antoniou
,
J.
,
Epure
,
L. M.
,
Michalek
,
A. J.
,
Grant
,
M. P.
,
Iatridis
,
J. C.
, and
Mwale
,
F.
,
2013
, “
Analysis of Quantitative Magnetic Resonance Imaging and Biomechanical Parameters on Human Discs With Different Grades of Degeneration
,”
J. Magn. Reson. Imaging
,
38
(
6
), pp.
1402
1414
.
104.
Freeman
,
A. L.
,
Buttermann
,
G. R.
,
Beaubien
,
B. P.
, and
Rochefort
,
W. E.
,
2013
, “
Compressive Properties of Fibrous Repair Tissue Compared to Nucleus and Annulus
,”
J. Biomech.
,
46
(
10
), pp.
1714
1721
.
105.
Iatridis
,
J. C.
,
Kumar
,
S.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1999
, “
Shear Mechanical Properties of Human Lumbar Annulus Fibrosus
,”
J. Orthop. Res.
,
17
(
5
), pp.
732
737
.
106.
Guerin
,
H. A. L.
, and
Elliott
,
D. M.
,
2006
, “
Degeneration Affects the Fiber Reorientation of Human Annulus Fibrosus Under Tensile Load
,”
J. Biomech.
,
39
(
8
), pp.
1410
1418
.
107.
Fujita
,
Y.
,
Wagner
,
D. R.
,
Biviji
,
A. A.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
2000
, “
Anisotropic Shear Behavior of the Annulus Fibrosus: Effect of Harvest Site and Tissue Prestrain
,”
Med. Eng. Phys.
,
22
(
5
), pp.
349
357
.
108.
Wagner
,
D. R.
, and
Lotz
,
J. C.
,
2004
, “
Theoretical Model and Experimental Results for the Nonlinear Elastic Behavior of Human Annulus Fibrosus
,”
J. Orthop. Res.
,
22
(
4
), pp.
901
909
.
109.
Green
,
T. P.
,
Adams
,
M. A.
, and
Dolan
,
P.
,
1993
, “
Tensile Properties of the Annulus Fibrosus II. Ultimate Tensile Strength and Fatigue Life
,”
Eur. Spine J.
,
2
(
4
), pp.
209
214
.
110.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
1997
, “
Radial Tensile Properties of the Lumbar Annulus Fibrosus are Site and Degeneration Dependent
,”
J. Orthop. Res.
,
15
(
6
), pp.
814
819
.
111.
Sen
,
S.
,
Jacobs
,
N. T.
,
Boxberger
,
J. I.
, and
Elliott
,
D. M.
,
2012
, “
Human Annulus Fibrosus Dynamic Tensile Modulus Increases With Degeneration
,”
Mech. Mater.
,
44
, pp.
93
98
.
112.
Cortes
,
D. H.
,
Jacobs
,
N. T.
,
DeLucca
,
J. F.
, and
Elliott
,
D. M.
,
2014
, “
Elastic, Permeability and Swelling Properties of Human Intervertebral Disc Tissues: A Benchmark for Tissue Engineering
,”
J. Biomech.
,
47
(
9
), pp.
2088
2094
.
113.
Bron
,
J. L.
,
van der Veen
,
A. J.
,
Helder
,
M. N.
,
van Royen
,
B. J.
, and
Smit
,
T. H.
,
2010
, “
Biomechanical and In Vivo Evaluation of Experimental Closure Devices of the Annulus Fibrosus Designed for a Goat Nucleus Replacement Model
,”
Eur. Spine J
,
19
(
8
), pp.
1347
1355
.
114.
Nerurkar
,
N. L.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2007
, “
Mechanics of Oriented Electrospun Nanofibrous Scaffolds for Annulus Fibrosus Tissue Engineering
,”
J. Orthop. Res.
,
25
(
8
), pp.
1018
1028
.
115.
Nerurkar
,
N. L.
,
Baker
,
B. M.
,
Sen
,
S.
,
Wible
,
E. E.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2009
, “
Nanofibrous Biologic Laminates Replicate the Form and Function of the Annulus Fibrosus
,”
Nat. Mater.
,
8
(
12
), pp.
986
992
.
116.
Nerurkar
,
N. L.
,
Han
,
W.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
2011
, “
Homologous Structure–Function Relationships Between Native Fibrocartilage and Tissue Engineered From MSC-Seeded Nanofibrous Scaffolds
,”
Biomaterials
,
32
(
2
), pp.
461
468
.
117.
Nerurkar
,
N. L.
,
Sen
,
S.
,
Baker
,
B. M.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2011
, “
Dynamic Culture Enhances Stem Cell Infiltration and Modulates Extracellular Matrix Production on Aligned Electrospun Nanofibrous Scaffolds
,”
Acta Biomater.
,
7
(
2
), pp.
485
491
.
118.
Koepsell
,
L.
,
Remund
,
T.
,
Bao
,
J.
,
Neufeld
,
D.
,
Fong
,
H.
, and
Deng
,
Y.
,
2011
, “
Tissue Engineering of Annulus Fibrosus Using Electrospun Fibrous Scaffolds With Aligned Polycaprolactone Fibers
,”
J. Biomed. Mater. Res.
,
99A
(
4
), pp.
564
575
.
119.
Yeganegi
,
M.
,
Kandel
,
R. A.
, and
Santerre
,
J. P.
,
2010
, “
Characterization of a Biodegradable Electrospun Polyurethane Nanofiber Scaffold: Mechanical Properties and Cytotoxicity
,”
Acta Biomater.
,
6
(
10
), pp.
3847
3855
.
120.
Wismer
,
N.
,
Grad
,
S.
,
Fortunato
,
G.
,
Ferguson
,
S. J.
,
Alini
,
M.
, and
Eglin
,
D.
,
2014
, “
Biodegradable Electrospun Scaffolds for Annulus Fibrosus Tissue Engineering: Effect of Scaffold Structure and Composition on Annulus Fibrosus Cells In Vitro
,”
Tissue Eng., Part A
, p.
140123085256009
.
121.
Turner
,
K. G.
,
Ahmed
,
N.
,
Santerre
,
J. P.
, and
Kandel
,
R. A.
,
2014
, “
Modulation of Annulus Fibrosus Cell Alignment and Function on Oriented Nanofibrous Polyurethane Scaffolds Under Tension
,”
Spine J.
,
14
(
3
), pp.
424
434
.
122.
Sharifi
,
S.
,
van Kooten
,
T. G.
,
Kranenburg
,
H.-J. C.
,
Meij
,
B. P.
,
Behl
,
M.
,
Lendlein
,
A.
, and
Grijpma
,
D. W.
,
2013
, “
An Annulus Fibrosus Closure Device Based on a Biodegradable Shape-Memory Polymer Network
,”
Biomaterials
,
34
(
33
), pp.
8105
8113
.
123.
Vernengo
,
J.
,
Fussell
,
G. W.
,
Smith
,
N. G.
, and
Lowman
,
A. M.
,
2010
, “
Synthesis and Characterization of Injectable Bioadhesive Hydrogels for Nucleus Pulposus Replacement and Repair of the Damaged Intervertebral Disc
,”
J. Biomed. Mater. Res.
,
93B
(
2
), pp.
309
317
.
124.
Cho
,
H.
,
Park
,
S.-H.
,
Park
,
K.
,
Shim
,
J. W.
,
Huang
,
J.
,
Smith
,
R.
,
Elder
,
S.
,
Min
,
B.-H.
, and
Hasty
,
K. A.
,
2013
, “
Construction of a Tissue-Engineered Annulus Fibrosus
,”
Artif. Organs
,
37
(
7
), pp.
E131
E138
.
125.
Martin
,
J. T.
,
Milby
,
A. H.
,
Chiaro
,
J. A.
,
Kim
,
D. H.
,
Hebela
,
N. M.
,
Smith
,
L. J.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2014
, “
Translation of an EngineeredNanofibrous Disc-Like Angle-Ply Structure for Intervertebral Disc Replacement in a Small Animal Model
,”
Acta Biomater.
,
10
(
6
), pp.
2473
2481
.
126.
Driscoll
,
T. P.
,
Nerurkar
,
N. L.
,
Jacobs
,
N. T.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2011
, “
Fiber Angle and Aspect Ratio Influence the Shear Mechanics of Oriented Electrospun Nanofibrous Scaffolds
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1627
1636
.
127.
Schek
,
R. M.
,
Michalek
,
A. J.
, and
Iatridis
,
J. C.
,
2011
, “
Genipin-Crosslinked Fibrin Hydrogels as a Potential Adhesive to Augment Intervertebral Disc Annulus Repair
,”
Eur. Cell Mater.
,
21
, pp.
373
383
.
128.
Guterl
,
C. C.
,
Torre
,
O. M.
,
Purmessur
,
D.
,
Khyati
,
D.
,
Likhitpanichkul
,
M.
,
Hecht
,
A. C.
,
Nicoll
,
S. B.
, and
Iatridis
,
J. C.
,
2014
, “
Characterization of Mechanics and Cytocompatibility of Fibrin-Genipin Annulus Fibrosus Sealant With the Addition of Cell Adhesion Molecules
,”
Tissue Eng. Part A
,
20
(
17–18
), p.
140506130038007
.
129.
Jeong
,
C. G.
,
Francisco
,
A. T.
,
Niu
,
Z.
,
Mancino
,
R. L.
,
Craig
,
S. L.
, and
Setton
,
L. A.
,
2014
, “
Screening of Hyaluronic Acid–Poly(Ethylene Glycol) Composite Hydrogels to Support Intervertebral Disc Cell Biosynthesis Using Artificial Neural Network Analysis
,”
Acta Biomater.
,
10
(
8
), pp.
3421
3430
.
130.
Nerurkar
,
N. L.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
2008
, “
ISSLS Prize Winner: Integrating Theoretical and Experimental Methods for Functional Tissue Engineering of the Annulus Fibrosus
,”
Spine
,
33
(
25
), pp.
2691
2701
.
131.
Wan
,
Y.
,
Feng
,
G.
,
Shen
,
F. H.
,
Balian
,
G.
,
Laurencin
,
C. T.
, and
Li
,
X.
,
2007
, “
Novel Biodegradable Poly(1,8-octanediol malate) for Annulus Fibrosus Regeneration
,”
Macromol. Biosci.
,
7
(
11
), pp.
1217
1224
.
132.
Wiltsey
,
C.
,
Christiani
,
T.
,
Williams
,
J.
,
Scaramazza
,
J.
,
Van Sciver
,
C.
,
Toomer
,
K.
,
Sheehan
,
J.
,
Branda
,
A.
,
Nitzl
,
A.
,
England
,
E.
,
Kadlowec
,
J.
,
Iftode
,
C.
, and
Vernengo
,
J.
,
2015
, “
Thermogelling Bioadhesive Scaffolds for Intervertebral Disk Tissue Engineering: Preliminary In Vitro Comparison of Aldehyde-Based Versus Alginate Microparticle-Mediated Adhesion
,”
Acta Biomater.
,
16
, pp.
71
80
.
133.
Jiao
,
Y.
,
Gyawali
,
D.
,
Stark
,
J. M.
,
Akcora
,
P.
,
Nair
,
P.
,
Tran
,
R. T.
, and
Yang
,
J.
,
2012
, “
A Rheological Study of Biodegradable Injectable PEGMC/HA Composite Scaffolds
,”
Soft Matter
,
8
(
5
), pp.
1499
1507
.
134.
Sitterle
,
V. B.
,
Sun
,
W.
, and
Levenston
,
M. E.
,
2008
, “
A Modified Lap Test to More Accurately Estimate Interfacial Shear Strength for Bonded Tissues
,”
J. Biomech.
,
41
(
15
), pp.
3260
3264
.
135.
Maher
,
S. A.
,
Mauck
,
R. L.
,
Rackwitz
,
L.
, and
Tuan
,
R. S.
,
2010
, “
A Nano-Fibrous Cell Seeded Hydrogel Promotes Integration in a Cartilage Gap Model
,”
J. Anat.
,
4
(
1
), pp.
25
29
.
136.
Iatridis
,
J. C.
, and
ap Gwynn
,
I.
,
2004
, “
Mechanisms for Mechanical Damage in the Intervertebral Disc Annulus Fibrosus
,”
J. Biomech.
,
37
(
8
), pp.
1165
1175
.
137.
Vergroesen
,
P.-P. A.
,
Bochyn ska
,
A. I.
,
Emanuel
,
K. S.
,
Sharifi
,
S.
,
Kingma
,
I.
,
Grijpma
,
D. W.
, and
Smit
,
T. H.
,
2015
, “
A Biodegradable Glue for Annulus Closure
,”
Spine
,
40
(
9
), pp.
622
628
.
138.
Long
,
R. G.
,
Buerki
,
A.
,
Zysset
,
P.
,
Eglin
,
D.
,
Grijpma
,
D. W.
,
Blanquer
,
S. B. G.
,
Hecht
,
A. C.
, and
Iatridis
,
J. C.
,
2015
, “
Mechanical Restoration and Failure Analyses of Composite Repair Strategy for Annulus Fibrosus
,”
Acta Biomater.
,
30
, pp.
116
125
.
139.
Gantenbein
,
B.
,
Illien-Jünger
,
S.
,
Chan
,
S.
,
Walser
,
J.
,
Haglund
,
L.
,
Ferguson
,
S. J.
,
Iatridis
,
J. C.
, and
Grad
,
S.
,
2015
, “
Organ Culture Bioreactors-Platforms to Study Human Intervertebral Disc Degeneration and Regenerative Therapy
,”
Curr. Stem Cell Res. Ther.
,
31
(
23
), pp.
339
352
.
140.
Gawri
,
R.
,
Mwale
,
F.
,
Ouellet
,
J.
,
Roughley
,
P. J.
,
Steffen
,
T.
,
Antoniou
,
J.
, and
Haglund
,
L.
,
2011
, “
Development of an Organ Culture System for Long-Term Survival of the Intact Human Intervertebral Disc
,”
Spine
,
36
(
22
), pp.
1835
1842
.
141.
Walter
,
B. A.
,
Illien-Junger
,
S.
,
Nasser
,
P. R.
,
Hecht
,
A. C.
, and
Iatridis
,
J. C.
,
2014
, “
Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture
,”
J. Biomech.
,
47
(
9
), pp.
2095
2101
.
142.
Haglund
,
L.
,
Moir
,
J.
,
Beckman
,
L.
,
Mulligan
,
K. R.
,
Jim
,
B.
,
Ouellet
,
J. A.
,
Roughley
,
P.
, and
Steffen
,
T.
,
2011
, “
Development of a Bioreactor for Axially Loaded Intervertebral Disc Organ Culture
,”
Tissue Eng. Part C
,
17
(
10
), pp.
1011
1019
.
143.
O'Connell
,
G. D.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2007
, “
Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry
,”
Spine
,
32
(
3
), pp.
328
333
.
144.
Wang
,
S.
,
Park
,
W. M.
,
Kim
,
Y. H.
,
Cha
,
T.
,
Wood
,
K.
, and
Li
,
G.
,
2014
, “
In Vivo Loads in the Lumbar L3–4 Disc During a Weight Lifting Extension
,”
Clin. Biomech. (Bristol, Avon).
,
29
(
2
), pp.
155
160
.
145.
Michalek
,
A. J.
,
Funabashi
,
K. L.
, and
Iatridis
,
J. C.
,
2010
, “
Needle Puncture Injury of the Rat Intervertebral Disc Affects Torsional and Compressive Biomechanics Differently
,”
Eur. Spine J.
,
19
(
12
), pp.
2110
2116
.
You do not currently have access to this content.