Optimized for millions of years, natural materials often outperform synthetic materials due to their hierarchical structures and multifunctional abilities. They usually feature a complex architecture that consists of simple building blocks. Indeed, many natural materials such as bone, nacre, hair, and spider silk, have outstanding material properties, making them applicable to engineering applications that may require both mechanical resilience and environmental compatibility. However, such natural materials are very difficult to harvest in bulk, and may be toxic in the way they occur naturally, and therefore, it is critical to use alternative methods to fabricate materials that have material functions similar to material function as their natural counterparts for large-scale applications. Recent progress in additive manufacturing, especially the ability to print multiple materials at upper micrometer resolution, has given researchers an excellent instrument to design and reconstruct natural-inspired materials. The most advanced 3D-printer can now be used to manufacture samples to emulate their geometry and material composition with high fidelity. Its capabilities, in combination with computational modeling, have provided us even more opportunities for designing, optimizing, and testing the function of composite materials, in order to achieve composites of high mechanical resilience and reliability. In this review article, we focus on the advanced material properties of several multifunctional biological materials and discuss how the advanced 3D-printing techniques can be used to mimic their architectures and functions. Lastly, we discuss the limitations of 3D-printing, suggest possible future developments, and discuss applications using bio-inspired materials as a tool in bioengineering and other fields.

References

1.
Fratzl
,
P.
,
2007
, “
Biomimetic Materials Research: What Can we Really Learn From Nature's Structural Materials?
,”
J. R. Soc. Interface
,
4
(
15
), pp.
637
642
.
2.
Gao
,
H.
,
Ji
,
B.
,
Jäger
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci.
,
100
(
10
), pp.
5597
5600
.
3.
Bechtle
,
S.
,
Ang
,
S. F.
, and
Schneider
,
G. A.
,
2010
, “
On the Mechanical Properties of Hierarchically Structured Biological Materials
,”
Biomaterials
,
31
(
25
), pp.
6378
6385
.
4.
Meyers
,
M. A.
,
Chen
,
P.-Y.
,
Lin
,
A. Y.-M.
, and
Seki
,
Y.
,
2008
, “
Biological Materials: Structure and Mechanical Properties
,”
Prog. Mater. Sci.
,
53
(
1
), pp.
1
206
.
5.
Meyers
,
M. A.
,
McKittrick
,
J.
, and
Chen
,
P.-Y.
,
2013
, “
Structural Biological Materials: Critical Mechanics-Materials Connections
,”
Science
,
339
(
6121
), pp.
773
779
.
6.
Cranford
,
S. W.
,
Tarakanova
,
A.
,
Pugno
,
N. M.
, and
Buehler
,
M. J.
,
2012
, “
Nonlinear Material Behaviour of Spider Silk Yields Robust Webs
,”
Nature
,
482
(
7383
), pp.
72
76
.
7.
Compton
,
B. G.
, and
Lewis
,
J. A.
,
2014
, “
3D-Printing of Lightweight Cellular Composites
,”
Adv. Mater.
,
26
(
34
), pp.
5930
5935
.
8.
Gross
,
B. C.
,
Erkal
,
J. L.
,
Lockwood
,
S. Y.
,
Chen
,
C.
, and
Spence
,
D. M.
,
2014
, “
Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences
,”
Anal. Chem.
,
86
(
7
), pp.
3240
3253
.
9.
Wen
,
L.
,
Weaver
,
J. C.
, and
Lauder
,
G. V.
,
2014
, “
Biomimetic Shark Skin: Design, Fabrication and Hydrodynamic Function
,”
J. Exp. Biol.
,
217
(
10
), pp.
1656
1666
.
10.
Lin
,
E.
,
Li
,
Y.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
,
2014
, “
3D Printed, Bio-Inspired Prototypes and Analytical Models for Structured Suture Interfaces With Geometrically-Tuned Deformation and Failure Behavior
,”
J. Mech. Phys. Solids
,
73
, pp.
166
182
.
11.
Khalyfa
,
A.
,
Vogt
,
S.
,
Weisser
,
J.
,
Grimm
,
G.
,
Rechtenbach
,
A.
,
Meyer
,
W.
, and
Schnabelrauch
,
M.
,
2007
, “
Development of a New Calcium Phosphate Powder-Binder System for the 3D Printing of Patient Specific Implants
,”
J. Mater. Sci.
,
18
(
5
), pp.
909
916
.
12.
Luz
,
G. M.
, and
Mano
,
J. F.
,
2009
, “
Biomimetic Design of Materials and Biomaterials Inspired by the Structure of Nacre
,”
Philos. Trans. R. Soc. London A
,
367
(
1893
), pp.
1587
1605
.
13.
Bhushan
,
B.
,
2009
, “
Biomimetics: Lessons From Nature—An Overview
,”
Philos. Trans. R. Soc. London A
,
367
(
1893
), pp.
1445
1486
.
14.
Downer
,
L.
, and
Dockrill
,
P.
,
2008
, “
Whalepower Tubercle Blade Power Performance Test Report
,”
Wind Energy Institute of Canada
,
Tignish, PE, Canada
.
15.
Launey
,
M. E.
,
Buehler
,
M. J.
, and
Ritchie
,
R. O.
,
2010
, “
On the Mechanistic Origins of Toughness in Bone
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
25
53
.
16.
Jackson
,
A.
,
Vincent
,
J.
, and
Turner
,
R.
,
1988
, “
The Mechanical Design of Nacre
,”
Proc. R. Soc. London B
,
234
(
1277
), pp.
415
440
.
17.
Barthelat
,
F.
, and
Espinosa
,
H.
,
2007
, “
An Experimental Investigation of Deformation and Fracture of Nacre—Mother of Pearl
,”
Exp. Mech.
,
47
(
3
), pp.
311
324
.
18.
Seshadri
,
I. P.
, and
Bhushan
,
B.
,
2008
, “
In Situ Tensile Deformation Characterization of Human Hair With Atomic Force Microscopy
,”
Acta Mater.
,
56
(
4
), pp.
774
781
.
19.
Henkel
,
J.
,
Woodruff
,
M. A.
,
Epari
,
D. R.
,
Steck
,
R.
,
Glatt
,
V.
,
Dickinson
,
I. C.
,
Choong
,
P. F.
,
Schuetz
,
M. A.
, and
Hutmacher
,
D. W.
,
2013
, “
Bone Regeneration Based on Tissue Engineering Conceptions—A 21st Century Perspective
,”
Bone Res.
,
1
(
3
), pp.
216
248
.
20.
Sun
,
J.
, and
Bhushan
,
B.
,
2012
, “
Hierarchical Structure and Mechanical Properties of Nacre: A Review
,”
RSC Adv.
,
2
(
20
), pp.
7617
7632
.
21.
Currey
,
J.
,
1977
, “
Mechanical Properties of Mother of Pearl in Tension
,”
Proc. R. Soc. London, Ser. B
,
196
(
1125
), pp.
443
463
.
22.
Menig
,
R.
,
Meyers
,
M.
,
Meyers
,
M.
, and
Vecchio
,
K.
,
2000
, “
Quasi-Static and Dynamic Mechanical Response of Haliotis Rufescens (Abalone) Shells
,”
Acta Mater.
,
48
(
9
), pp.
2383
2398
.
23.
Gosline
,
J. M.
,
Guerette
,
P. A.
,
Ortlepp
,
C. S.
, and
Savage
,
K. N.
,
1999
, “
The Mechanical Design of Spider Silks: From Fibroin Sequence to Mechanical Function
,”
J. Exp. Biol.
,
202
(
23
), pp.
3295
3303
.
24.
Weiner
,
S.
, and
Wagner
,
H. D.
,
1998
, “
The Material Bone: Structure–Mechanical Function Relations
,”
Annu. Rev. Mater. Sci.
,
28
(
1
), pp.
271
298
.
25.
Ritchie
,
R. O.
,
2011
, “
The Conflicts Between Strength and Toughness
,”
Nat. Mater.
,
10
(
11
), pp.
817
822
.
26.
Dunlop
,
J. W.
, and
Fratzl
,
P.
,
2010
, “
Biological Composites
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
1
24
.
27.
Tai
,
K.
,
Dao
,
M.
,
Suresh
,
S.
,
Palazoglu
,
A.
, and
Ortiz
,
C.
,
2007
, “
Nanoscale Heterogeneity Promotes Energy Dissipation in Bone
,”
Nat. Mater.
,
6
(
6
), pp.
454
462
.
28.
Blaiszik
,
B.
,
Kramer
,
S.
,
Olugebefola
,
S.
,
Moore
,
J. S.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2010
, “
Self-Healing Polymers and Composites
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
179
211
.
29.
Einhorn
,
T. A.
,
1998
, “
The Cell and Molecular Biology of Fracture Healing
,”
Clin. Orthop. Relat. Res.
,
355
, pp.
S7
S21
.
30.
Reddi
,
A.
,
1998
, “
Initiation of Fracture Repair by Bone Morphogenetic Proteins
,”
Clin. Orthop. Relat. Res.
,
355
, pp.
S66
S72
.
31.
Hadjidakis
,
D. J.
, and
Androulakis
,
I. I.
,
2006
, “
Bone Remodeling
,”
Ann. N. Y. Acad. Sci.
,
1092
(
1
), pp.
385
396
.
32.
Kickelbick
,
G.
,
2007
,
Hybrid Materials: Synthesis, Characterization, and Applications
,
Wiley
,
Weinheim, Germany
.
33.
Qin
,
Z.
, and
Buehler
,
M. J.
,
2013
, “
Impact Tolerance in Mussel Thread Networks by Heterogeneous Material Distribution
,”
Nat. Commun.
,
4
, p.
2187
.
34.
Munch
,
E.
,
Launey
,
M. E.
,
Alsem
,
D. H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2008
, “
Tough, Bio-Inspired Hybrid Materials
,”
Science
,
322
(
5907
), pp.
1516
1520
.
35.
Liu
,
J.
,
Feng
,
X.
,
Fryxell
,
G. E.
,
Wang
,
L. Q.
,
Kim
,
A. Y.
, and
Gong
,
M.
,
1998
, “
Hybrid Mesoporous Materials With Functionalized Monolayers
,”
Adv. Mater.
,
10
(
2
), pp.
161
165
.
36.
Pedro
,
G.
, and
Sanchez
,
C.
,
2006
,
Functional Hybrid Materials
,
Wiley
,
Weinheim, Germany
.
37.
Chen
,
P. Y.
,
Lin
,
A. Y. M.
,
Lin
,
Y. S.
,
Seki
,
Y.
,
Stokes
,
A. G.
,
Peyras
,
J.
,
Olevsky
,
E. A.
,
Meyers
,
M. A.
, and
McKittrick
,
J.
,
2008
, “
Structure and Mechanical Properties of Selected Biological Materials
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
3
), pp.
208
226
.
38.
Miserez
,
A.
,
Schneberk
,
T.
,
Sun
,
C.
,
Zok
,
F. W.
, and
Waite
,
J. H.
,
2008
, “
The Transition From Stiff to Compliant Materials in Squid Beaks
,”
Science
,
319
(
5871
), pp.
1816
1819
.
39.
Claussen
,
K. U.
,
Scheibel
,
T.
,
Schmidt
,
H. W.
, and
Giesa
,
R.
,
2012
, “
Polymer Gradient Materials: Can Nature Teach us New Tricks?
,”
Macromol. Mater. Eng.
,
297
(
10
), pp.
938
957
.
40.
Espinosa
,
H. D.
,
Rim
,
J. E.
,
Barthelat
,
F.
, and
Buehler
,
M. J.
,
2009
, “
Merger of Structure and Material in Nacre and Bone—Perspectives on De Novo Biomimetic Materials
,”
Prog. Mater. Sci.
,
54
(
8
), pp.
1059
1100
.
41.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
(
9
), pp.
1963
1990
.
42.
Feng
,
Q.
,
Cui
,
F.
,
Pu
,
G.
,
Wang
,
R.
, and
Li
,
H.
,
2000
, “
Crystal Orientation, Toughening Mechanisms and a Mimic of Nacre
,”
Mater. Sci. Eng. C
,
11
(
1
), pp.
19
25
.
43.
Song
,
F.
,
Soh
,
A.
, and
Bai
,
Y.
,
2003
, “
Structural and Mechanical Properties of the Organic Matrix Layers of Nacre
,”
Biomaterials
,
24
(
20
), pp.
3623
3631
.
44.
Wang
,
R.
, and
Gupta
,
H. S.
,
2011
, “
Deformation and Fracture Mechanisms of Bone and Nacre
,”
Annu. Rev. Mater. Res.
,
41
(
1
), pp.
41
73
.
45.
Barthelat
,
F.
,
2010
, “
Nacre From Mollusk Shells: A Model for High-Performance Structural Materials
,”
Bioinspiration Biomimetics
,
5
(
3
), p.
035001
.
46.
Brümmer
,
F.
,
Pfannkuchen
,
M.
,
Baltz
,
A.
,
Hauser
,
T.
, and
Thiel
,
V.
,
2008
, “
Light Inside Sponges
,”
J. Exp. Mar. Biol. Ecol.
,
367
(
2
), pp.
61
64
.
47.
Gilbert
,
S. F.
,
Loredo
,
G. A.
,
Brukman
,
A.
, and
Burke
,
A. C.
,
2001
, “
Morphogenesis of the Turtle Shell: The Development of a Novel Structure in Tetrapod Evolution
,”
Evol. Dev.
,
3
(
2
), pp.
47
58
.
48.
Scheyer
,
T.
,
2007
, “
Comparative Bone Histology of the Turtle Shell (Carapace and Plastron) Implications for Turtle Systematics, Functional Morphology and Turtle Origins
,” Ph.D. dissertation, Institut für Paläontologie, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.
49.
Wu
,
X.
,
Jiang
,
P.
,
Chen
,
L.
,
Zhang
,
J.
,
Yuan
,
F.
, and
Zhu
,
Y.
,
2014
, “
Synergetic Strengthening by Gradient Structure
,”
Mater. Res. Lett.
,
2
(
4
), pp.
185
191
.
50.
Phillips
,
J. E.
,
Burns
,
K. L.
,
Le Doux
,
J. M.
,
Guldberg
,
R. E.
, and
García
,
A. J.
,
2008
, “
Engineering Graded Tissue Interfaces
,”
Proc. Natl. Acad. Sci.
,
105
(
34
), pp.
12170
12175
.
51.
Wu
,
X.
,
Jiang
,
P.
,
Chen
,
L.
,
Yuan
,
F.
, and
Zhu
,
Y. T.
,
2014
, “
Extraordinary Strain Hardening by Gradient Structure
,”
Proc. Natl. Acad. Sci.
,
111
(
20
), pp.
7197
7201
.
52.
Qin
,
Z.
, and
Buehler
,
M. J.
,
2014
, “
Molecular Mechanics of Mussel Adhesion Proteins
,”
J. Mech. Phys. Solids
,
62
, pp.
19
30
.
53.
Weaver
,
J. C.
,
Milliron
,
G. W.
,
Miserez
,
A.
,
Evans-Lutterodt
,
K.
,
Herrera
,
S.
,
Gallana
,
I.
,
Mershon
,
W. J.
,
Swanson
,
B.
,
Zavattieri
,
P.
, and
DiMasi
,
E.
,
2012
, “
The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer
,”
Science
,
336
(
6086
), pp.
1275
1280
.
54.
Udupa
,
G.
,
Rao
,
S. S.
, and
Gangadharan
,
K.
,
2014
, “
Functionally Graded Composite Materials: An Overview
,”
Procedia Mater. Sci.
,
5
, pp.
1291
1299
.
55.
Hardy
,
J. G.
, and
Scheibel
,
T. R.
,
2010
, “
Composite Materials Based on Silk Proteins
,”
Prog. Polym. Sci.
,
35
(
9
), pp.
1093
1115
.
56.
Giesa
,
T.
,
Arslan
,
M.
,
Pugno
,
N. M.
, and
Buehler
,
M. J.
,
2011
, “
Nanoconfinement of Spider Silk Fibrils Begets Superior Strength, Extensibility, and Toughness
,”
Nano Lett.
,
11
(
11
), pp.
5038
5046
.
57.
Tokareva
,
O.
,
Jacobsen
,
M.
,
Buehler
,
M.
,
Wong
,
J.
, and
Kaplan
,
D. L.
,
2014
, “
Review: Structure–Function–Property–Design Interplay in Biopolymers: Spider Silk
,”
Acta Biomater.
,
10
(
4
), pp.
1612
1626
.
58.
Lin
,
S.
,
Ryu
,
S.
,
Tokareva
,
O.
,
Gronau
,
G.
,
Jacobsen
,
M. M.
,
Huang
,
W.
,
Rizzo
,
D. J.
,
Li
,
D.
,
Staii
,
C.
,
Pugno
,
N. M.
,
Wong
,
J. Y.
,
Kaplan
,
D. L.
, and
Buehler
,
M. J.
,
2015
, “
Predictive Modelling-Based Design and Experiments for Synthesis and Spinning of Bioinspired Silk Fibres
,”
Nat. Commun.
,
6
, pp.
6892
6892
.
59.
Rammensee
,
S.
,
Slotta
,
U.
,
Scheibel
,
T.
, and
Bausch
,
A. R.
,
2008
, “
Assembly Mechanism of Recombinant Spider Silk Proteins
,”
Proc. Natl. Acad. Sci.
,
105
(
18
), pp.
6590
6595
.
60.
Hardy
,
J. G.
,
Römer
,
L. M.
, and
Scheibel
,
T. R.
,
2008
, “
Polymeric Materials Based on Silk Proteins
,”
Polymer
,
49
(
20
), pp.
4309
4327
.
61.
Tarakanova
,
A.
, and
Buehler
,
M. M. M. E.
,
2012
, “
A Materiomics Approach to Spider Silk: Protein Molecules to Webs
,”
J. Miner. Met. Mater. Soc.
,
64
(
2
), pp.
214
225
.
62.
Qin
,
Z.
,
Dimas
,
L.
,
Adler
,
D.
,
Bratzel
,
G.
, and
Buehler
,
M. J.
,
2014
, “
Biological Materials by Design
,”
J. Phys.: Condens. Matter
,
26
(
7
), p.
073101
.
63.
Qin
,
Z.
, and
Buehler
,
M. J.
,
2012
, “
Cooperativity Governs the Size and Structure of Biological Interfaces
,”
J. Biomech.
,
45
(
16
), pp.
2778
2783
.
64.
Keten
,
S.
,
Xu
,
Z.
,
Ihle
,
B.
, and
Buehler
,
M. J.
,
2010
, “
Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of β-Sheet Crystals in Silk
,”
Nat. Mater.
,
9
(
4
), pp.
359
367
.
65.
Matsunaga
,
R.
,
Abe
,
R.
,
Ishii
,
D.
,
Watanabe
,
S.-I.
,
Kiyoshi
,
M.
,
Nöcker
,
B.
,
Tsuchiya
,
M.
, and
Tsumoto
,
K.
,
2013
, “
Bidirectional Binding Property of High Glycine–Tyrosine Keratin-Associated Protein Contributes to the Mechanical Strength and Shape of Hair
,”
J. Struct. Biol.
,
183
(
3
), pp.
484
494
.
66.
Chou
,
C.-C.
,
Lepore
,
E.
,
Antonaci
,
P.
,
Pugno
,
N.
, and
Buehler
,
M. J.
,
2015
, “
Mechanics of Trichocyte Alpha-Keratin Fibers: Experiment, Theory, and Simulation
,”
J. Mater. Res.
,
30
(
1
), pp.
26
35
.
67.
Chou
,
C.-C.
, and
Buehler
,
M. J.
,
2012
, “
Structure and Mechanical Properties of Human Trichocyte Keratin Intermediate Filament Protein
,”
Biomacromolecules
,
13
(
11
), pp.
3522
3532
.
68.
Quinlan
,
R. A.
,
Bromley
,
E. H.
, and
Pohl
,
E.
,
2015
, “
A Silk Purse From a Sow's Ear—Bioinspired Materials Based on α-Helical Coiled Coils
,”
Curr. Opin. Cell Biol.
,
32
, pp.
131
137
.
69.
Kajiura
,
Y.
,
Watanabe
,
S.
,
Itou
,
T.
,
Nakamura
,
K.
,
Iida
,
A.
,
Inoue
,
K.
,
Yagi
,
N.
,
Shinohara
,
Y.
, and
Amemiya
,
Y.
,
2006
, “
Structural Analysis of Human Hair Single Fibres by Scanning Microbeam SAXS
,”
J. Struct. Biol.
,
155
(
3
), pp.
438
444
.
70.
Chou
,
C.-C.
, and
Buehler
,
M. J.
,
2012
, “
Molecular Mechanics of Disulfide Bonded Alpha-Helical Protein Filaments
,”
BioNanoScience
,
3
(
1
), pp.
85
94
.
71.
McKittrick
,
J.
,
Chen
,
P. Y.
,
Bodde
,
S. G.
,
Yang
,
W.
,
Novitskaya
,
E. E.
, and
Meyers
,
M. A.
,
2012
, “
The Structure, Functions, and Mechanical Properties of Keratin
,”
JOM
,
64
(
4
), pp.
449
468
.
72.
Keten
,
S.
,
Chou
,
C.-C.
,
van Duin
,
A. C. T.
, and
Buehler
,
M. J.
,
2012
, “
Tunable Nanomechanics of Protein Disulfide Bonds in Redox Microenvironments
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
32
40
.
73.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
74.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
.
75.
Campbell
,
T.
,
Williams
,
C.
,
Ivanova
,
O.
, and
Garrett
,
B.
,
2011
, “
Could 3D Printing Change the World
,”
Technologies, Potential, and Implications of Additive Manufacturing
,
Atlantic Council
,
Washington, DC
.
76.
Bhatia
,
S. K.
, and
Sharma
,
S.
,
2014
, “
3D-Printed Prosthetics Roll Off the Presses
,”
Chem. Eng. Prog.
,
110
(
5
), pp.
28
33
.
77.
Melchels
,
F. P. W.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
A Review on Stereolithography and Its Applications in Biomedical Engineering
,”
Biomaterials
,
31
(
24
), pp.
6121
6130
.
78.
Doraiswamy
,
A.
,
Dunaway
,
T. M.
,
Wilker
,
J. J.
, and
Narayan
,
R. J.
,
2009
, “
Inkjet Printing of Bioadhesives
,”
J. Biomed. Mater. Res.
,
89B
(
1
), pp.
28
35
.
79.
Kumar
,
S.
,
2003
, “
Selective Laser Sintering: A Qualitative and Objective Approach
,”
JOM
,
55
(
10
), pp.
43
47
.
80.
Miller
,
J. S.
,
Stevens
,
K. R.
,
Yang
,
M. T.
,
Baker
,
B. M.
,
Nguyen
,
D.-H. T.
,
Cohen
,
D. M.
,
Toro
,
E.
,
Chen
,
A. A.
,
Galie
,
P. A.
, and
Yu
,
X.
,
2012
, “
Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-Dimensional Tissues
,”
Nat. Mater.
,
11
(
9
), pp.
768
774
.
81.
Wang
,
H.
,
Li
,
Y.
,
Zuo
,
Y.
,
Li
,
J.
,
Ma
,
S.
, and
Cheng
,
L.
,
2007
, “
Biocompatibility and Osteogenesis of Biomimetic Nano-Hydroxyapatite/Polyamide Composite Scaffolds for Bone Tissue Engineering
,”
Biomaterials
,
28
(
22
), pp.
3338
3348
.
82.
Landel
,
R. F.
, and
Nielsen
,
L. E.
,
1993
,
Mechanical Properties of Polymers and Composites
,
CRC Press
,
New York
.
83.
Thostenson
,
E. T.
,
Ren
,
Z.
, and
Chou
,
T.-W.
,
2001
, “
Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
,
61
(
13
), pp.
1899
1912
.
84.
Dimas
,
L. S.
,
Bratzel
,
G. H.
,
Eylon
,
I.
, and
Buehler
,
M. J.
,
2013
, “
Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing
,”
Adv. Funct. Mater.
,
23
(
36
), pp.
4629
4638
.
85.
Mirzaeifar
,
R.
,
Dimas
,
L. S.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2015
, “
Defect-Tolerant Bioinspired Hierarchical Composites: Simulation and Experiment
,”
ACS Biomater. Sci. Eng.
,
1
(
5
), pp.
295
304
.
86.
Gibson
,
L.
,
Ashby
,
M.
,
Schajer
,
G.
, and
Robertson
,
C.
,
1982
, “
The Mechanics of Two-Dimensional Cellular Materials
,”
Proc. R. Soc. London A
,
382
(
1782
), pp.
25
42
.
87.
Freyman
,
T.
,
Yannas
,
I.
, and
Gibson
,
L.
,
2001
, “
Cellular Materials as Porous Scaffolds for Tissue Engineering
,”
Prog. Mater. Sci.
,
46
(
3
), pp.
273
282
.
88.
Gibson
,
L.
,
1989
, “
Modelling the Mechanical Behavior of Cellular Materials
,”
Mater. Sci. Eng. A
,
110
, pp.
1
36
.
89.
Christensen
,
R. M.
,
2000
, “
Mechanics of Cellular and Other Low-Density Materials
,”
Int. J. Solids Struct.
,
37
(
1
), pp.
93
104
.
90.
Fu
,
Q.
,
Saiz
,
E.
, and
Tomsia
,
A. P.
,
2011
, “
Bioinspired Strong and Highly Porous Glass Scaffolds
,”
Adv. Funct. Mater.
,
21
(
6
), pp.
1058
1063
.
91.
Gergely
,
R. C.
,
Pety
,
S. J.
,
Krull
,
B. P.
,
Patrick
,
J. F.
,
Doan
,
T. Q.
,
Coppola
,
A. M.
,
Thakre
,
P. R.
,
Sottos
,
N. R.
,
Moore
,
J. S.
, and
White
,
S. R.
,
2015
, “
Multidimensional Vascularized Polymers Using Degradable Sacrificial Templates
,”
Adv. Funct. Mater.
,
25
(
7
), pp.
1043
1052
.
92.
Fu
,
Q.
,
Saiz
,
E.
, and
Tomsia
,
A. P.
,
2011
, “
Direct Ink Writing of Highly Porous and Strong Glass Scaffolds for Load-Bearing Bone Defects Repair and Regeneration
,”
Acta Biomater.
,
7
(
10
), pp.
3547
3554
.
93.
Duro-Royo
,
J.
,
Zolotovsky
,
K.
,
Mogas-Soldevila
,
L.
,
Varshney
,
S.
,
Oxman
,
N.
,
Boyce
,
M. C.
, and
Ortiz
,
C.
,
2015
, “
MetaMesh: A Hierarchical Computational Model for Design and Fabrication of Biomimetic Armored Surfaces
,”
Comput. Aided Des.
,
60
, pp.
14
27
.
94.
Sant
,
S.
,
Hancock
,
M. J.
,
Donnelly
,
J. P.
,
Iyer
,
D.
, and
Khademhosseini
,
A.
,
2010
, “
Biomimetic Gradient Hydrogels for Tissue Engineering
,”
Can. J. Chem. Eng.
,
88
(
6
), pp.
899
911
.
95.
Kalita
,
S. J.
,
Bose
,
S.
,
Hosick
,
H. L.
, and
Bandyopadhyay
,
A.
,
2003
, “
Development of Controlled Porosity Polymer–Ceramic Composite Scaffolds Via Fused Deposition Modeling
,”
Mater. Sci. Eng. C
,
23
(
5
), pp.
611
620
.
96.
Sherwood
,
J. K.
,
Riley
,
S. L.
,
Palazzolo
,
R.
,
Brown
,
S. C.
,
Monkhouse
,
D. C.
,
Coates
,
M.
,
Griffith
,
L. G.
,
Landeen
,
L. K.
, and
Ratcliffe
,
A.
,
2002
, “
A Three-Dimensional Osteochondral Composite Scaffold for Articular Cartilage Repair
,”
Biomaterials
,
23
(
24
), pp.
4739
4751
.
97.
Wegst
,
U. G. K.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.
98.
Porter
,
M. M.
,
Adriaens
,
D.
,
Hatton
,
R. L.
,
Meyers
,
M. A.
, and
McKittrick
,
J.
,
2015
, “
Why the Seahorse Tail is Square
,”
Science
,
349
(
6243
), p.
aaa6683
.
99.
Qin
,
Z.
,
Compton
,
B. G.
,
Lewis
,
J. A.
, and
Buehler
,
M. J.
,
2015
, “
Structural Optimization of 3D-Printed Synthetic Spider Webs for High Strength
,”
Nat. Commun.
,
6
, pp.
7038
7038
.
100.
Li
,
Y.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
,
2011
, “
Stiffness and Strength of Suture Joints in Nature
,”
Phys. Rev. E
,
84
(
6
), p.
062904
.
101.
Lewis
,
J. A.
,
Smay
,
J. E.
,
Stuecker
,
J.
, and
Cesarano
,
J.
,
2006
, “
Direct Ink Writing of Three-Dimensional Ceramic Structures
,”
J. Am. Ceram. Soc.
,
89
(
12
), pp.
3599
3609
.
102.
Schechter
,
E.
,
2014
, “
Mantis Shrimp Spending Delivers Surprising Payoff
,”
Aerosp. Am.
,
52
(
6
), pp.
8
11
.
103.
Kranz
,
S.
,
2013
, “
Multinozzle Printheads for 3D Printing of Viscoelastic Inks
,” M.S. thesis,
University of Illinois at Urbana-Champaign
, Champaign, IL.
104.
Belter
,
J. T.
, and
Dollar
,
A. M.
,
2015
, “
Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique
,”
PLoS ONE
,
10
(
4
), p.
e0122915
.
You do not currently have access to this content.