Cell-generated mechanical forces drive many of the tissue movements and rearrangements that are required to transform simple populations of cells into the complex three-dimensional geometries of mature organs. However, mechanical forces do not need to arise from active cellular movements. Recent studies have illuminated the roles of passive forces that result from mechanical instabilities between epithelial tissues and their surroundings. These mechanical instabilities cause essentially one-dimensional epithelial tubes and two-dimensional epithelial sheets to buckle or wrinkle into complex topologies containing loops, folds, and undulations in organs as diverse as the brain, the intestine, and the lung. Here, I highlight examples of buckling and wrinkling morphogenesis, and suggest that this morphogenetic mechanism may be broadly responsible for sculpting organ form.

References

References
1.
Levine
,
M.
, and
Davidson
,
E. H.
,
2005
, “
Gene Regulatory Networks for Development
,”
Proc. Natl. Acad. Sci. U. S. A.
,
102
(
14
), pp.
4936
4942
.
2.
Hironaka
,
K.
, and
Morishita
,
Y.
,
2012
, “
Encoding and Decoding of Positional Information in Morphogen-Dependent Patterning
,”
Curr. Opin. Genet. Dev.
,
22
(
6
), pp.
553
561
.
3.
Kicheva
,
A.
,
Cohen
,
M.
, and
Briscoe
,
J.
,
2012
, “
Developmental Pattern Formation: Insights From Physics and Biology
,”
Science
,
338
(
6104
), pp.
210
212
.
4.
Thompson
,
D. W.
,
1917
,
On Growth and Form
,
University Press
,
Cambridge, UK
.
5.
Mammoto
,
T.
,
Mammoto
,
A.
, and
Ingber
,
D. E.
,
2013
, “
Mechanobiology and Developmental Control
,”
Annu. Rev. Cell Dev. Biol.
,
29
(
1
), pp.
27
61
.
6.
Lecuit
,
T.
, and
Yap
,
A. S.
,
2015
, “
E-Cadherin Junctions as Active Mechanical Integrators in Tissue Dynamics
,”
Nat. Cell Biol.
,
17
(
5
), pp.
533
539
.
7.
Chanet
,
S.
, and
Martin
,
A. C.
,
2014
, “
Mechanical Force Sensing in Tissues
,”
Prog. Mol. Biol. Transl. Sci.
,
126
, pp.
317
352
.
8.
Siedlik
,
M. J.
, and
Nelson
,
C. M.
,
2015
, “
Regulation of Tissue Morphodynamics: An Important Role for Actomyosin Contractility
,”
Curr. Opin. Genet. Dev.
,
32
, pp.
80
85
.
9.
Blanchard
,
G. B.
,
Kabla
,
A. J.
,
Schultz
,
N. L.
,
Butler
,
L. C.
,
Sanson
,
B.
,
Gorfinkiel
,
N.
,
Mahadevan
,
L.
, and
Adams
,
R. J.
,
2009
, “
Tissue Tectonics: Morphogenetic Strain Rates, Cell Shape Change and Intercalation
,”
Nat. Methods
,
6
(
6
), pp.
458
464
.
10.
Taber
,
L. A.
,
2014
, “
Morphomechanics: Transforming Tubes Into Organs
,”
Curr. Opin. Genet. Dev.
,
27
, pp.
7
13
.
11.
Volokh
,
K. Y.
,
2006
, “
Tissue Morphogenesis: A Surface Buckling Mechanism
,”
Int. J. Dev. Biol.
,
50
(
2–3
), pp.
359
365
.
12.
Sharon
,
E.
,
Roman
,
B.
,
Marder
,
M.
,
Shin
,
G. S.
, and
Swinney
,
H. L.
,
2002
, “
Mechanics. Buckling Cascades in Free Sheets
,”
Nature
,
419
(
6907
), pp.
579
.
13.
Sharon
,
E.
, and
Efrati
,
E.
,
2010
, “
The Mechanics of Non-Euclidian Plates
,”
Soft Matter
,
6
(
22
), pp.
5693
5704
.
14.
Cerda
,
E.
, and
Mahadevan
,
L.
,
2003
, “
Geometry and Physics of Wrinkling
,”
Phys. Rev. Lett.
,
90
(
7
), p.
074302
.
15.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1986
,
Theory of Elasticity
,
Pergamon Press
,
Oxford, UK
.
16.
Biot
,
M. A.
,
1937
, “
Bending of an Infinite Beam on an Elastic Foundation
,”
ASME J. Appl. Mech.
,
4
, pp.
A1
A7
.
17.
Pocivavsek
,
L.
,
Dellsy
,
R.
,
Kern
,
A.
,
Johnson
,
S.
,
Lin
,
B.
,
Lee
,
K. Y.
, and
Cerda
,
E.
,
2008
, “
Stress and Fold Localization in Thin Elastic Membranes
,”
Science
,
320
(
5878
), pp.
912
916
.
18.
Demery
,
V.
,
Davidovitch
,
B.
, and
Santangelo
,
C. D.
,
2014
, “
Mechanics of Large Folds in Thin Interfacial Films
,”
Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
,
90
(
4
), p.
042401
.
19.
Biot
,
M. A.
,
1957
, “
Folding Instability of a Layered Viscoelastic Medium Under Compression
,”
Proc. R. Soc. London Ser. A
,
242
(
1231
), pp.
444
454
.
20.
Biot
,
M. A.
,
1959
, “
On the Instability and Folding Deformation of a Layered Viscoelastic Medium Under Compression
,”
ASME J. Appl. Mech.
,
26
, pp.
393
400
.
21.
Richman
,
D. P.
,
Stewart
,
R. M.
,
Hutchinson
,
J. W.
, and
Caviness
,
V. S.
, Jr.
,
1975
, “
Mechanical Model of Brain Convolutional Development
,”
Science
,
189
(
4196
), pp.
18
21
.
22.
Striedter
,
G. F.
,
Srinivasan
,
S.
, and
Monuki
,
E. S.
,
2015
, “
Cortical Folding: When, Where, How, and Why?
,”
Annu. Rev. Neurosci.
,
38
(
1
), pp.
291
307
.
23.
Savin
,
T.
,
Kurpios
,
N. A.
,
Shyer
,
A. E.
,
Florescu
,
P.
,
Liang
,
H.
,
Mahadevan
,
L.
, and
Tabin
,
C. J.
,
2011
, “
On the Growth and Form of the Gut
,”
Nature
,
476
(
7358
), pp.
57
62
.
24.
Cervantes
,
S.
,
2013
, “
Cellular and Molecular Mechanisms of Intestinal Elongation in Mammals: The Long and Short of It
,”
Histol. Histopathol.
,
28
(
4
), pp.
427
436
.
25.
Thomason
,
R. T.
,
Bader
,
D. M.
, and
Winters
,
N. I.
,
2012
, “
Comprehensive Timeline of Mesodermal Development in the Quail Small Intestine
,”
Dev. Dyn.
,
241
(
11
), pp.
1678
1694
.
26.
Kurpios
,
N. A.
,
Ibanes
,
M.
,
Davis
,
N. M.
,
Lui
,
W.
,
Katz
,
T.
,
Martin
,
J. F.
,
Izpisua Belmonte
,
J. C.
, and
Tabin
,
C. J.
,
2008
, “
The Direction of Gut Looping is Established by Changes in the Extracellular Matrix and in Cell:Cell Adhesion
,”
Proc. Natl. Acad. Sci. U.S.A.
,
105
(
25
), pp.
8499
8506
.
27.
Davis
,
N. M.
,
Kurpios
,
N. A.
,
Sun
,
X.
,
Gros
,
J.
,
Martin
,
J. F.
, and
Tabin
,
C. J.
,
2008
, “
The Chirality of Gut Rotation Derives From Left-Right Asymmetric Changes in the Architecture of the Dorsal Mesentery
,”
Dev. Cell
,
15
(
1
), pp.
134
145
.
28.
Rubin
,
D. C.
,
2007
, “
Intestinal Morphogenesis
,”
Curr. Opin. Gastroenterol.
,
23
(
2
), pp.
111
114
.
29.
Coulombre
,
A. J.
, and
Coulombre
,
J. L.
,
1958
, “
Intestinal Development. I. Morphogenesis of the Villi and Musculature
,”
J. Embryol. Exp. Morphol.
,
6
(
3
), pp.
403
411
.
30.
Shyer
,
A. E.
,
Tallinen
,
T.
,
Nerurkar
,
N. L.
,
Wei
,
Z.
,
Gil
,
E. S.
,
Kaplan
,
D. L.
,
Tabin
,
C. J.
, and
Mahadevan
,
L.
,
2013
, “
Villification: How the Gut Gets Its Villi
,”
Science
,
342
(
6155
), pp.
212
218
.
31.
Nelson
,
C. M.
,
2013
, “
Forces in Epithelial Origami
,”
Dev. Cell
,
26
(
6
), pp.
554
556
.
32.
Ben Amar
,
M.
, and
Jia
,
F.
,
2013
, “
Anisotropic Growth Shapes Intestinal Tissues During Embryogenesis
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
26
), pp.
10525
10530
.
33.
Shyer
,
A. E.
,
Huycke
,
T. R.
,
Lee
,
C.
,
Mahadevan
,
L.
, and
Tabin
,
C. J.
,
2015
, “
Bending Gradients: How the Intestinal Stem Cell Gets Its Home
,”
Cell
,
161
(
3
), pp.
569
580
.
34.
Tucker
,
A.
, and
Sharpe
,
P.
,
2004
, “
The Cutting-Edge of Mammalian Development; How the Embryo Makes Teeth
,”
Nat. Rev. Genet.
,
5
(
7
), pp.
499
508
.
35.
Jernvall
,
J.
,
Kettunen
,
P.
,
Karavanova
,
I.
,
Martin
,
L. B.
, and
Thesleff
,
I.
,
1994
, “
Evidence for the Role of the Enamel Knot as a Control Center in Mammalian Tooth Cusp Formation: Non-Dividing Cells Express Growth Stimulating Fgf-4 Gene
,”
Int. J. Dev. Biol.
,
38
(
3
), pp.
463
469
.
36.
Takigawa-Imamura
,
H.
,
Morita
,
R.
,
Iwaki
,
T.
,
Tsuji
,
T.
, and
Yoshikawa
,
K.
,
2015
, “
Tooth Germ Invagination From Cell–Cell Interaction: Working Hypothesis on Mechanical Instability
,”
J. Theor. Biol.
,
382
, pp.
284
291
.
37.
Osborn
,
J. W.
,
2008
, “
A Model of Growth Restraints to Explain the Development and Evolution of Tooth Shapes in Mammals
,”
J. Theor. Biol.
,
255
(
3
), pp.
338
343
.
38.
Metzger
,
R. J.
, and
Krasnow
,
M. A.
,
1999
, “
Genetic Control of Branching Morphogenesis
,”
Science
,
284
(
5420
), pp.
1635
1639
.
39.
Morrisey
,
E. E.
, and
Hogan
,
B. L.
,
2010
, “
Preparing for the First Breath: Genetic and Cellular Mechanisms in Lung Development
,”
Dev. Cell
,
18
(
1
), pp.
8
23
.
40.
Herriges
,
M.
, and
Morrisey
,
E. E.
,
2014
, “
Lung Development: Orchestrating the Generation and Regeneration of a Complex Organ
,”
Development
,
141
(
3
), pp.
502
513
.
41.
Metzger
,
R. J.
,
Klein
,
O. D.
,
Martin
,
G. R.
, and
Krasnow
,
M. A.
,
2008
, “
The Branching Programme of Mouse Lung Development
,”
Nature
,
453
(
7196
), pp.
745
750
.
42.
Alescio
,
T.
, and
Cassini
,
A.
,
1962
, “
Induction In Vitro of Tracheal Buds by Pulmonary Mesenchyme Grafted on Tracheal Epithelium
,”
J. Exp. Zool.
,
150
(
2
), pp.
83
94
.
43.
Grobstein
,
C.
,
1953
, “
Inductive Epitheliomesenchymal Interaction in Cultured Organ Rudiments of the Mouse
,”
Science
,
118
(
3054
), pp.
52
55
.
44.
Nogawa
,
H.
, and
Ito
,
T.
,
1995
, “
Branching Morphogenesis of Embryonic Mouse Lung Epithelium in Mesenchyme-Free Culture
,”
Development
,
121
(
4
), pp.
1015
1022
.
45.
Cardoso
,
W. V.
,
Itoh
,
A.
,
Nogawa
,
H.
,
Mason
,
I.
, and
Brody
,
J. S.
,
1997
, “
FGF-1 and FGF-7 Induce Distinct Patterns of Growth and Differentiation in Embryonic Lung Epithelium
,”
Dev. Dyn.
,
208
(
3
), pp.
398
405
.
46.
Bellusci
,
S.
,
Grindley
,
J.
,
Emoto
,
H.
,
Itoh
,
N.
, and
Hogan
,
B. L.
,
1997
, “
Fibroblast Growth Factor 10 (FGF10) and Branching Morphogenesis in the Embryonic Mouse Lung
,”
Development
,
124
(
23
), pp.
4867
4878
.
47.
Park
,
W. Y.
,
Miranda
,
B.
,
Lebeche
,
D.
,
Hashimoto
,
G.
, and
Cardoso
,
W. V.
,
1998
, “
FGF-10 is a Chemotactic Factor for Distal Epithelial Buds During Lung Development
,”
Dev. Biol.
,
201
(
2
), pp.
125
134
.
48.
Min
,
H.
,
Danilenko
,
D. M.
,
Scully
,
S. A.
,
Bolon
,
B.
,
Ring
,
B. D.
,
Tarpley
,
J. E.
,
DeRose
,
M.
, and
Simonet
,
W. S.
,
1998
, “
Fgf-10 is Required for Both Limb and Lung Development and Exhibits Striking Functional Similarity to Drosophila Branchless
,”
Genes Dev.
,
12
(
20
), pp.
3156
3161
.
49.
Sekine
,
K.
,
Ohuchi
,
H.
,
Fujiwara
,
M.
,
Yamasaki
,
M.
,
Yoshizawa
,
T.
,
Sato
,
T.
,
Yagishita
,
N.
,
Matsui
,
D.
,
Koga
,
Y.
,
Itoh
,
N.
, and
Kato
,
S.
,
1999
, “
Fgf10 is Essential for Limb and Lung Formation
,”
Nat. Genet.
,
21
(
1
), pp.
138
141
.
50.
Tang
,
N.
,
Marshall
,
W. F.
,
McMahon
,
M.
,
Metzger
,
R. J.
, and
Martin
,
G. R.
,
2011
, “
Control of Mitotic Spindle Angle by the RAS-Regulated ERK1/2 Pathway Determines Lung Tube Shape
,”
Science
,
333
(
6040
), pp.
342
345
.
51.
Levesque
,
B. M.
,
Vosatka
,
R. J.
, and
Nielsen
,
H. C.
,
2000
, “
Dihydrotestosterone Stimulates Branching Morphogenesis, Cell Proliferation, and Programmed Cell Death in Mouse Embryonic Lung Explants
,”
Pediatr. Res.
,
47
(
4 Pt 1
), pp.
481
491
.
52.
Volckaert
,
T.
,
Campbell
,
A.
,
Dill
,
E.
,
Li
,
C.
,
Minoo
,
P.
, and
De Langhe
,
S.
,
2013
, “
Localized Fgf10 Expression is Not Required for Lung Branching Morphogenesis But Prevents Differentiation of Epithelial Progenitors
,”
Development
,
140
(
18
), pp.
3731
3742
.
53.
Varner
,
V. D.
,
Gleghorn
,
J. P.
,
Miller
,
E.
,
Radisky
,
D. C.
, and
Nelson
,
C. M.
,
2015
, “
Mechanically Patterning the Embryonic Airway Epithelium
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
30
), pp.
9230
9235
.
54.
Nogawa
,
H.
,
Morita
,
K.
, and
Cardoso
,
W. V.
,
1998
, “
Bud Formation Precedes the Appearance of Differential Cell Proliferation During Branching Morphogenesis of Mouse Lung Epithelium In Vitro
,”
Dev. Dyn.
,
213
(
2
), pp.
228
235
.
55.
McCulley
,
D.
,
Wienhold
,
M.
, and
Sun
,
X.
,
2015
, “
The Pulmonary Mesenchyme Directs Lung Development
,”
Curr. Opin. Genet. Dev.
,
32
, pp.
98
105
.
56.
Schachtner
,
S. K.
,
Wang
,
Y.
, and
Scott Baldwin
,
H.
,
2000
, “
Qualitative and Quantitative Analysis of Embryonic Pulmonary Vessel Formation
,”
Am. J. Respir. Cell Mol. Biol.
,
22
(
2
), pp.
157
165
.
57.
Sparrow
,
M. P.
, and
Lamb
,
J. P.
,
2003
, “
Ontogeny of Airway Smooth Muscle: Structure, Innervation, Myogenesis and Function in the Fetal Lung
,”
Respir. Physiol. Neurobiol.
,
137
(
2–3
), pp.
361
372
.
58.
Kumar
,
M. E.
,
Bogard
,
P. E.
,
Espinoza
,
F. H.
,
Menke
,
D. B.
,
Kingsley
,
D. M.
, and
Krasnow
,
M. A.
,
2014
, “
Mesenchymal Cells. Defining a Mesenchymal Progenitor Niche at Single-Cell Resolution
,”
Science
,
346
(
6211
), p.
1258810
.
59.
Kim
,
H. Y.
,
Pang
,
M. F.
,
Varner
, V
. D.
,
Kojima
,
L.
,
Miller
,
E.
,
Radisky
,
D. C.
, and
Nelson
,
C. M.
,
2015
, “
Localized Smooth Muscle Differentiation is Essential for Epithelial Bifurcation During Branching Morphogenesis of the Mammalian Lung
,”
Dev. Cell
,
34
(
6
), pp.
719
726
.
60.
Bayly
,
P. V.
,
Okamoto
,
R. J.
,
Xu
,
G.
,
Shi
,
Y.
, and
Taber
,
L. A.
,
2013
, “
A Cortical Folding Model Incorporating Stress-Dependent Growth Explains Gyral Wavelengths and Stress Patterns in the Developing Brain
,”
Phys. Biol.
,
10
(
1
), p.
016005
.
61.
His
,
W.
,
1874
,
Unsere Korperform und das Physiologische Problem Ihrer Entstehung
,
F.C.W. Vogel
,
Leipzig, Germany
.
You do not currently have access to this content.