Hyaluronic acid (HA) is a commonly used natural polymer for cell scaffolding. Modification by methacrylate allows it to be polymerized by free radicals via addition of an initiator, e.g., light-sensitive Irgacure, to form a methacrylated hyaluronic acid (MeHA) hydrogel. Light-activated crosslinking can be used to control the degree of polymerization, and sequential polymerization steps allow cells plated onto or in the hydrogel to initially feel a soft and then a stiff matrix. Here, the elastic modulus of MeHA hydrogels was systematically analyzed by atomic force microscopy (AFM) for a number of variables including duration of UV exposure, monomer concentration, and methacrylate functionalization. To determine how cells would respond to a specific two-step polymerization, NIH 3T3 fibroblasts were cultured on the stiffening MeHA hydrogels and found to reorganize their cytoskeleton and spread area upon hydrogel stiffening, consistent with cells originally cultured on substrates of the final elastic modulus.

References

References
1.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.
2.
Choi
,
Y. S.
,
Vincent
,
L. G.
,
Lee
,
A. R.
,
Dobke
,
M. K.
, and
Engler
,
A. J.
,
2012
, “
Mechanical Derivation of Functional Myotubes From Adipose-Derived Stem Cells
,”
Biomaterials
,
33
(
8
), pp.
2482
2491
.
3.
Lo
,
C. M.
,
Wang
,
H. B.
,
Dembo
,
M.
, and
Wang
,
Y. L.
,
2000
, “
Cell Movement is Guided by the Rigidity of the Substrate
,”
Biophys. J.
,
79
(
1
), pp.
144
152
.
4.
Vincent
,
L. G.
,
Choi
,
Y. S.
,
Alonso-Latorre
,
B.
,
del Alamo
,
J. C.
, and
Engler
,
A. J.
,
2013
, “
Mesenchymal Stem Cell Durotaxis Depends on Substrate Stiffness Gradient Strength
,”
Biotechnol. J.
,
8
(
4
), pp.
472
484
.
5.
Paszek
,
M. J.
,
Zahir
,
N.
,
Johnson
,
K. R.
,
Lakins
,
J. N.
,
Rozenberg
,
G. I.
,
Gefen
,
A.
,
Reinhart-King
,
C. A.
,
Margulies
,
S. S.
,
Dembo
,
M.
,
Boettiger
,
D.
,
Hammer
,
D. A.
, and
Weaver
,
V. M.
,
2005
, “
Tensional Homeostasis and the Malignant Phenotype
,”
Cancer Cell
,
8
(
3
), pp.
241
254
.
6.
Ulrich
,
T. A.
,
Jaim
,
A.
,
Tanner
,
K.
,
MacKay
,
J. L.
, and
Kumar
,
S.
,
2010
, “
Probing Cellular Mechanobiology in Three-Dimensional Culture With Collagen-Agarose Matrices
,”
Biomaterials
,
31
(
7
), pp.
1875
1884
.
7.
Lu
,
P.
,
Weaver
, V
. M.
, and
Werb
,
Z.
,
2012
, “
The Extracellular Matrix: A Dynamic Niche in Cancer Progression
,”
J. Cell Biol.
,
196
(
4
), pp.
395
406
.
8.
Daley
,
W. P.
,
Peters
,
S. B.
, and
Larsen
,
M.
,
2008
, “
Extracellular Matrix Dynamics in Development and Regenerative Medicine
,”
J. Cell Sci.
,
121
(
Pt. 3
), pp.
255
264
.
9.
Woessner
,
J. F.
,
1991
, “
Matrix Metalloproteinases and Their Inhibitors in Connective Tissue Remodeling
,”
FASEB J.
,
5
(
8
), pp.
2145
2154
.
10.
Rozario
,
T.
, and
DeSimone
,
D. W.
,
2010
, “
The Extracellular Matrix in Development and Morphogenesis: A Dynamic View
,”
Dev. Biol.
,
341
(
1
), pp.
126
140
.
11.
Fingleton
,
B.
,
2003
, “
Matrix Metalloproteinase Inhibitors for Cancer Therapy: The Current Situation and Future Prospects
,”
Expert Opin. Ther. Targets
,
7
(
3
), pp.
385
397
.
12.
Danielsen
,
C. C.
,
Wiggers
,
H.
, and
Andersen
,
H. R.
,
1998
, “
Increased Amounts of Collagenase and Gelatinase in Porcine Myocardium Following Ischemia and Reperfusion
,”
J. Mol. Cell. Cardiol.
,
30
(
7
), pp.
1431
1442
.
13.
Galis
,
Z. S.
,
Sukhova
,
G. K.
,
Lark
,
M. W.
, and
Libby
,
P.
,
1994
, “
Increased Expression of Matrix Metalloproteinases and Matrix Degrading Activity in Vulnerable Regions of Human Atherosclerotic Plaques
,”
J. Clin. Invest.
,
94
(
6
), pp.
2493
2503
.
14.
Burdick
,
J. A.
, and
Murphy
,
W. L.
,
2012
, “
Moving From Static to Dynamic Complexity in Hydrogel Design
,”
Nat. Commun.
,
3
, p.
1269
.
15.
Young
,
J. L.
, and
Engler
,
A. J.
,
2011
, “
Hydrogels With Time-Dependent Material Properties Enhance Cardiomyocyte Differentiation In Vitro
,”
Biomaterials
,
32
(
4
), pp.
1002
1009
.
16.
Stowers
,
R. S.
,
Allen
,
S. C.
, and
Suggs
,
L. J.
,
2015
, “
Dynamic Phototuning of 3D Hydrogel Stiffness
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
7
), pp.
1953
1958
.
17.
Ceylan
,
H.
,
Urel
,
M.
,
Erkal
,
T. S.
,
Tekinay
,
A. B.
,
Dana
,
A.
, and
Guler
,
M. O.
,
2013
, “
Mussel Inspired Dynamic Cross-Linking of Self-Healing Peptide Nanofiber Network
,”
Adv. Funct. Mater.
,
23
(
16
), pp.
2081
2090
.
18.
Phadke
,
A.
,
Zhang
,
C.
,
Arman
,
B.
,
Hsu
,
C. C.
,
Mashelkar
,
R. A.
,
Lele
,
A. K.
,
Tauber
,
M. J.
,
Arya
,
G.
, and
Varghese
,
S.
,
2012
, “
Rapid Self-Healing Hydrogels
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
12
), pp.
4383
4388
.
19.
Guvendiren
,
M.
, and
Burdick
,
J. A.
,
2012
, “
Stiffening Hydrogels to Probe Short- and Long-Term Cellular Responses to Dynamic Mechanics
,”
Nat. Commun.
,
3
, p.
792
.
20.
Goodison
,
S.
,
Urquidi
,
V.
, and
Tarin
,
D.
,
1999
, “
CD44 Cell Adhesion Molecules
,”
Mol. Pathol.
,
52
(
4
), pp.
189
196
.
21.
Kim
,
Y.
,
Lee
,
Y. S.
,
Choe
,
J.
,
Lee
,
H.
,
Kim
,
Y. M.
, and
Jeoung
,
D.
,
2008
, “
CD44-Epidermal Growth Factor Receptor Interaction Mediates Hyaluronic Acid-Promoted Cell Motility by Activating Protein Kinase C Signaling Involving Akt, Rac1, Phox, Reactive Oxygen Species, Focal Adhesion Kinase, and MMP-2
,”
J. Biol. Chem.
,
283
(
33
), pp.
22513
22528
.
22.
Marklein
,
R. A.
, and
Burdick
,
J. A.
,
2010
, “
Spatially Controlled Hydrogel Mechanics to Modulate Stem Cell Interactions
,”
Soft Matter
,
6
(
1
), pp.
136
143
.
23.
Bryant
,
S. J.
, and
Anseth
,
K. S.
,
2003
, “
Controlling the Spatial Distribution of ECM Components in Degradable PEG Hydrogels for Tissue Engineering Cartilage
,”
J. Biomed. Mater. Res. A
,
64
(
1
), pp.
70
79
.
24.
Radmacher
,
M.
,
2002
, “
Measuring the Elastic Properties of Living Cells by the Atomic Force Microscope
,”
Methods Cell Biol.
,
68
, pp.
67
90
.
25.
Kaushik
,
G.
,
Fuhrmann
,
A.
,
Cammarato
,
A.
, and
Engler
,
A. J.
,
2011
, “
In Situ Mechanical Analysis of Myofibrillar Perturbation and Aging on Soft, Bilayered Drosophila Myocardium
,”
Biophys. J.
,
101
(
11
), pp.
2629
2637
.
26.
Hertz
,
H.
,
1882
, “
Über Die Berührung Fester Elastischer Körper
,”
J. Angew. Math.
,
92
, pp.
156
171
.
27.
Discher
,
D. E.
,
Mooney
,
D. J.
, and
Zandstra
,
P. W.
,
2009
, “
Growth Factors, Matrices, and Forces Combine and Control Stem Cells
,”
Science
,
324
(
5935
), pp.
1673
1677
.
28.
Pajerowski
,
J. D.
,
Dahl
,
K. N.
,
Zhong
,
F. L.
,
Sammak
,
P. J.
, and
Discher
,
D. E.
,
2007
, “
Physical Plasticity of the Nucleus in Stem Cell Differentiation
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
40
), pp.
15619
15624
.
29.
McBeath
,
R.
,
Pirone
,
D. M.
,
Nelson
,
C. M.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2004
, “
Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment
,”
Dev. Cell
,
6
(
4
), pp.
483
495
.
30.
Mitra
,
S. K.
,
Hanson
,
D. A.
, and
Schlaepfer
,
D. D.
,
2005
, “
Focal Adhesion Kinase: In Command and Control of Cell Motility
,”
Nat. Rev. Mol. Cell Biol.
,
6
(
1
), pp.
56
68
.
31.
Huebsch
,
N.
,
Arany
,
P. R.
,
Mao
,
A. S.
,
Shvartsman
,
D.
,
Ali
,
O. A.
,
Bencherif
,
S. A.
,
Rivera-Feliciano
,
J.
, and
Mooney
,
D. J.
,
2010
, “
Harnessing Traction-Mediated Manipulation of the Cell/Matrix Interface to Control Stem-Cell Fate
,”
Nat. Mater.
,
9
(
6
), pp.
518
526
.
32.
Engler
,
A.
,
Bacakova
,
L.
,
Newman
,
C.
,
Hategan
,
A.
,
Griffin
,
M.
, and
Discher
,
D.
,
2004
, “
Substrate Compliance Versus Ligand Density in Cell on Gel Responses
,”
Biophys. J.
,
86
(
1 Pt. 1
), pp.
617
628
.
33.
Gerdes
,
A. M.
,
Kellerman
,
S. E.
,
Moore
,
J. A.
,
Muffly
,
K. E.
,
Clark
,
L. C.
,
Reaves
,
P. Y.
,
Malec
,
K. B.
,
McKeown
,
P. P.
, and
Schocken
,
D. D.
,
1992
, “
Structural Remodeling of Cardiac Myocytes in Patients With Ischemic Cardiomyopathy
,”
Circulation
,
86
(
2
), pp.
426
430
.
34.
Kiang
,
J. D.
,
Wen
,
J. H.
,
Del Alamo
,
J. C.
, and
Engler
,
A. J.
,
2013
, “
Dynamic and Reversible Surface Topography Influences Cell Morphology
,”
J. Biomed. Mater. Res. A
,
101
(
8
), pp.
2313
2321
.
35.
Cameron
,
A. R.
,
Frith
,
J. E.
, and
Cooper-White
,
J. J.
,
2011
, “
The Influence of Substrate Creep on Mesenchymal Stem Cell Behaviour and Phenotype
,”
Biomaterials
,
32
(
26
), pp.
5979
5993
.
36.
Cameron
,
A. R.
,
Frith
,
J. E.
,
Gomez
,
G. A.
,
Yap
,
A. S.
, and
Cooper-White
,
J. J.
,
2014
, “
The Effect of Time-Dependent Deformation of Viscoelastic Hydrogels on Myogenic Induction and Rac1 Activity in Mesenchymal Stem Cells
,”
Biomaterials
,
35
(
6
), pp.
1857
1868
.
37.
Chaudhuri
,
O.
,
Gu
,
L.
,
Darnell
,
M.
,
Klumpers
,
D.
,
Bencherif
,
S. A.
,
Weaver
,
J. C.
,
Huebsch
,
N.
, and
Mooney
,
D. J.
,
2015
, “
Substrate Stress Relaxation Regulates Cell Spreading
,”
Nat. Commun.
,
6
, p.
6364
.
38.
Chaudhuri
,
O.
,
Gu
,
L.
,
Klumpers
,
D.
,
Darnell
,
M.
,
Bencherif
,
S. A.
,
Weaver
,
J. C.
,
Huebsch
,
N.
,
Lee
,
H. P.
,
Lippens
,
E.
,
Duda
,
G. N.
, and
Mooney
,
D. J.
,
2015
, “
Hydrogels With Tunable Stress Relaxation Regulate Stem Cell Fate and Activity
,”
Nat. Mater.
, epub.
39.
Yeung
,
T.
,
Georges
,
P. C.
,
Flanagan
,
L. A.
,
Marg
,
B.
,
Ortiz
,
M.
,
Funaki
,
M.
,
Zahir
,
N.
,
Ming
,
W.
,
Weaver
,
V.
, and
Janmey
,
P. A.
,
2005
, “
Effects of Substrate Stiffness on Cell Morphology, Cytoskeletal Structure, and Adhesion
,”
Cell Motil. Cytoskeleton
,
60
(
1
), pp.
24
34
.
40.
Rudnicki
,
M. S.
,
Cirka
,
H. A.
,
Aghvami
,
M.
,
Sander
,
E. A.
,
Wen
,
Q.
, and
Billiar
,
K. L.
,
2013
, “
Nonlinear Strain Stiffening is Not Sufficient to Explain How Far Cells Can Feel on Fibrous Protein Gels
,”
Biophys. J.
,
105
(
1
), pp.
11
20
.
You do not currently have access to this content.