Hemolysis (damage to red blood cells) is a long-standing problem in blood contacting devices, and its prediction has been the goal of considerable research. The most popular model relating hemolysis to fluid stresses is the power-law model, which was developed from experiments in pure shear only. In the absence of better data, this model has been extended to more complex flows by replacing the shear stress in the power-law equation with a von Mises-like scalar stress. While the validity of the scalar stress also remains to be confirmed, inconsistencies exist in its application, in particular, two forms that vary by a factor of 2 have been used. This article will clarify the proper extension of the power law to complex flows in a way that maintains correct results in the limit of pure shear.

References

References
1.
Kawahito
,
K.
, and
Nose
,
Y.
,
1997
, “
Hemolysis in Different Centrifugal Pumps
,”
Artif. Organs
,
21
(
4
), pp.
323
326
.
2.
Ravichandran
,
A. K.
,
Parker
,
J.
,
Novak
,
E.
,
Joseph
,
S. M.
,
Schilling
,
J. D.
,
Ewald
,
G. A.
, and
Silvestry
,
S.
,
2014
, “
Hemolysis in Left Ventricular Assist Device: A Retrospective Analysis of Outcomes
,”
J. Heart Lung Transplant.
,
33
(
1
), pp.
44
50
.
3.
Maraj
,
R.
,
Jacobs
,
L. E.
,
Ioli
,
A.
, and
Kotler
,
M. N.
,
1998
, “
Evaluation of Hemolysis in Patients With Prosthetic Heart Valves
,”
Clin. Cardiol.
,
21
(
6
), pp.
387
392
.
4.
Shapira
,
Y.
,
Vaturi
,
M.
, and
Sagie
,
A.
,
2009
, “
Hemolysis Associated With Prosthetic Heart Valves: A Review
,”
Cardiol. Rev.
,
17
(
3
), pp.
121
124
.
5.
Whitson
,
B. A.
,
Eckman
,
P.
,
Kamdar
,
F.
,
Lacey
,
A.
,
Shumway
,
S. J.
,
Liao
,
K. K.
, and
John
,
R.
,
2014
, “
Hemolysis, Pump Thrombus, and Neurologic Events in Continuous-Flow Left Ventricular Assist Device Recipients
,”
Ann. Thorac. Surg.
,
97
(
6
), pp.
2097
2103
.
6.
Taenaka
,
Y.
,
Wakisaka
,
Y.
,
Masuzawa
,
T.
,
Tatsumi
,
E.
,
Toda
,
K.
,
Miyazaki
,
K.
,
Eya
,
K.
,
Baba
,
Y.
,
Nakatani
,
T.
,
Ohno
,
T.
,
Nishimura
,
T.
, and
Takano
,
H.
,
1996
, “
Development of a Centrifugal Pump With Improved Antithrombogenicity and Hemolytic Property for Chronic Circulatory Support
,”
Artif. Organs
,
20
(
5
), pp.
491
496
.
7.
Yasuta
,
O.
,
Wakisaka
,
Y.
,
Hamamoto
,
T.
,
Tominaga
,
T.
,
Kitaichi
,
T.
,
Masuda
,
Y.
,
Hori
,
T.
, and
Kitagawa
,
T.
,
2000
, “
Advantage in Hemolysis of New Nikkiso Centrifugal Pump (HPM-05) for Pediatric ECMO
,”
ASAIO J.
,
46
(
2
), p.
172
.
8.
Oshikawa
,
M.
,
Araki
,
K.
,
Endo
,
G.
,
Anai
,
H.
,
Satoh
,
M.
, and
Maeda
,
M.
,
2000
, “
Development of a Mixed-Flow Cardiac Assist Device: An Approach to Reduce Hemolysis
,”
ASAIO J.
,
46
(
2
), p.
154
.http://journals.lww.com/asaiojournal/Citation/2000/03000/DEVELOPMENT_OF_A_MIXED_FLOW_CARDIAC_ASSIST_DEVICE_.15.aspx
9.
Luckraz
,
H.
,
Woods
,
M.
, and
Large
,
S. R.
,
2002
, “
And Hemolysis Goes on: Ventricular Assist Device in Combination With Veno-Venous Hemofiltration
,”
Ann. Thorac. Surg.
,
73
(
2
), pp.
546
548
.
10.
Mecozzi
,
G.
,
Milano
,
A. D.
,
De Carlo
,
M.
,
Sorrentino
,
F.
,
Pratali
,
S.
,
Nardi
,
C.
, and
Bortolotti
,
U.
,
2002
, “
Intravascular Hemolysis in Patients With New-Generation Prosthetic Heart Valves: A Prospective Study
,”
J. Thorac. Cardiovasc. Surg.
,
123
(
3
), pp.
550
556
.
11.
Shibasaki
,
I.
,
Kuwata
,
T.
,
Tsuchiya
,
G.
,
Ogawa
,
H.
,
Yamada
,
Y.
,
Toyoda
,
S.
,
Inoue
,
T.
, and
Fukuda
,
H.
,
2016
, “
Severe Hemolytic Anemia Caused by the NIPRO Extracorporeal Left Ventricular Assist Device
,”
Gen. Thorac. Cardiovasc. Surg
, epub.
12.
da Silva
,
B. U.
,
Jatene
,
A. D.
,
Leme
,
J.
,
Fonseca
,
J. W. G.
,
Silva
,
C.
,
Uebelhart
,
B.
,
Suzuki
,
C. K.
, and
Andrade
,
A. J. P.
,
2013
, “
In Vitro Assessment of the Apico Aortic Blood Pump: Anatomical Positioning, Hydrodynamic Performance, Hemolysis Studies, and Analysis in a Hybrid Cardiovascular Simulator
,”
Artif. Organs
,
37
(
11
), pp.
950
953
.
13.
Heuser
,
G.
, and
Opitz
,
R.
,
1980
, “
A Couette Viscometer for Short Time Shearing of Blood
,”
Biorheology
,
17
(
1–2
), pp.
17
24
.
14.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.http://europepmc.org/abstract/med/2365485
15.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
D'Avenio
,
G.
,
Di Benedetto
,
G.
, and
Barbaro
,
V.
,
2004
, “
The Power-Law Mathematical Model for Blood Damage Prediction: Analytical Developments and Physical Inconsistencies
,”
Artif. Organs
,
28
(
5
), pp.
467
475
.
16.
Garon
,
A.
, and
Farinas
,
M. I.
,
2004
, “
Fast Three-Dimensional Numerical Hemolysis Approximation
,”
Artif. Organs
,
28
(
11
), pp.
1016
1025
.
17.
Grigioni
,
M.
,
Morbiducci
,
U.
,
D'Avenio
,
G.
,
Benedetto
,
G. D.
, and
Gaudio
,
C. D.
,
2005
, “
A Novel Formulation for Blood Trauma Prediction by a Modified Power-Law Mathematical Model
,”
Biomech. Model. Mechanobiol.
,
4
(
4
), pp.
249
260
.
18.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Wu
,
C.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation
,”
ASAIO J.
,
58
(
4
), pp.
363
372
.
19.
Goubergrits
,
L.
, and
Affeld
,
K.
,
2004
, “
Numerical Estimation of Blood Damage in Artificial Organs
,”
Artif. Organs
,
28
(
5
), pp.
499
507
.
20.
Fill
,
B.
,
Gartner
,
M.
,
Horner
,
M.
, and
Ma
,
J.
,
2008
, “
A Comparison of Lagrangian and Eulerian Methodologies for Calculating Hemolysis
,”
ASAIO J.
,
54
(
2
), p.
37A
.http://journals.lww.com/asaiojournal/toc/2008/03000#-1636155427
21.
Popov
,
E. P.
,
Nagarajan
,
S.
, and
Lu
,
Z. A.
,
1976
,
Mechanics of Materials
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
22.
Bludszuweit
,
C.
,
1994
, “
A Theoretical Approach to the Prediction of Haemolysis in Centrifugal Blood Pumps
,”
Doctoral thesis
, Bioengineering Unit, University of Strathclyde, Glasgow, UK.http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310066
23.
Bludszuweit
,
C.
,
1995
, “
Three-Dimensional Numerical Prediction of Stress Loading of Blood Particles in a Centrifugal Pump
,”
Artif. Organs
,
19
(
7
), pp.
590
596
.
24.
Apel
,
J.
,
Paul
,
R.
,
Klaus
,
S.
,
Siess
,
T.
, and
Reul
,
H.
,
2001
, “
Assessment of Hemolysis Related Quantities in a Microaxial Blood Pump by Computational Fluid Dynamics
,”
Artif. Organs
,
25
(
5
), pp.
341
347
.
25.
Yano
,
T.
,
Sekine
,
K.
,
Mitoh
,
A.
,
Mitamura
,
Y.
,
Okamoto
,
E.
,
Kim
,
D. W.
,
Nishimura
,
I.
,
Murabayashi
,
S.
, and
Yozu
,
R.
,
2003
, “
An Estimation Method of Hemolysis Within an Axial Flow Blood Pump by Computational Fluid Dynamics Analysis
,”
Artif. Organs
,
27
(
10
), pp.
920
925
.
26.
Arvand
,
A.
,
Hormes
,
M.
, and
Reul
,
H.
,
2005
, “
A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump
,”
Artif. Organs
,
29
(
7
), pp.
531
540
.
27.
Zhang
,
J.
,
Gellman
,
B.
,
Koert
,
A.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2006
, “
Computational and Experimental Evaluation of the Fluid Dynamics and Hemocompatibility of the CentriMag Blood Pump
,”
Artif. Organs
,
30
(
3
), pp.
168
177
.
28.
Chua
,
L. P.
,
Song
,
G.
,
Lim
,
T. M.
, and
Zhou
,
T.
,
2006
, “
Numerical Analysis of the Inner Flow Field of a Biocentrifugal Blood Pump
,”
Artif. Organs
,
30
(
6
), pp.
467
477
.
29.
Alemu
,
Y.
, and
Bluestein
,
D.
,
2007
, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.
30.
de Tullio
,
M. D.
,
Nam
,
J.
,
Pascazio
,
G.
,
Balaras
,
E.
, and
Verzicco
,
R.
,
2012
, “
Computational Prediction of Mechanical Hemolysis in Aortic Valved Prostheses
,”
Eur. J. Mech., B: Fluids
,
35
, pp.
47
53
.
31.
Segalova
,
P. A.
,
Rao
,
K. T. V.
,
Zarins
,
C. K.
, and
Taylor
,
C. A.
,
2012
, “
Computational Modeling of Shear-Based Hemolysis Caused by Renal Obstruction
,”
ASME J. Biomech. Eng.
,
134
(
2
), p.
021003
.
32.
Ezzeldin
,
H. M.
,
de Tullio
,
M. D.
,
Vanella
,
M.
,
Solares
,
S. D.
, and
Balaras
,
E.
,
2015
, “
A Strain-Based Model for Mechanical Hemolysis Based on a Coarse-Grained Red Blood Cell Model
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1398
1409
.
33.
Ishii
,
K.
,
Hosoda
,
K.
,
Nishida
,
M.
,
Isoyama
,
T.
,
Saito
,
I.
,
Ariyoshi
,
K.
,
Inoue
,
Y.
,
Ono
,
T.
,
Nakagawa
,
H.
,
Sato
,
M.
,
Hara
,
S.
,
Lee
,
X.
,
Wu
,
S. Y.
,
Imachi
,
K.
, and
Abe
,
Y.
,
2015
, “
Hydrodynamic Characteristics of the Helical Flow Pump
,”
J. Artif. Organs
,
18
(
3
), pp.
206
212
.
34.
Mitoh
,
A.
,
Yano
,
T.
,
Sekine
,
K.
,
Mitamura
,
Y.
,
Okamoto
,
E.
,
Kim
,
D. W.
,
Yozu
,
R.
, and
Kawada
,
S.
,
2003
, “
Computational Fluid Dynamics Analysis of an Intra-Cardiac Axial Flow Pump
,”
Artif. Organs
,
27
(
1
), pp.
34
40
.
35.
Throckmorton
,
A. L.
,
Wood
,
H. G.
,
Day
,
S. W.
,
Song
,
X.
,
Click
,
P. C.
,
Allaire
,
P. E.
, and
Olsen
,
D. B.
,
2003
, “
Design of a Continuous Flow Centrifugal Pediatric Ventricular Assist Device
,”
Int. J. Artif. Organs
,
26
(
11
), pp.
1015
1031
.https://people.rit.edu/~swdeme/images/publications/Throckmorton%20-%20Design%20of%20Cont%20Flow%20Cent%20Pediatric%20VAD%20-%20scanned.pdf
36.
Wu
,
J.
,
Antaki
,
J. F.
,
Snyder
,
T. A.
,
Wagner
,
W. R.
,
Borovetz
,
H. S.
, and
Paden
,
B. E.
,
2005
, “
Design Optimization of Blood Shearing Instrument by Computational Fluid Dynamics
,”
Artif. Organs
,
29
(
6
), pp.
482
489
.
37.
Dongdong
,
X.
,
Chunzhang
,
Z.
,
Xiwen
,
Z.
, and
Jing
,
B.
,
2006
, “
Computational Fluid Dynamics Modeling and Hemolysis Analysis of Axial Blood Pumps With Various Impeller Structures
,”
Prog. Nat. Sci.
,
16
(
9
), pp.
993
997
.
38.
Kennington
,
J. R.
,
Frankel
,
S. H.
,
Chen
,
J.
,
Koenig
,
S. C.
,
Sobieski
,
M. A.
,
Giridharan
,
G. A.
, and
Rodefeld
,
M. D.
,
2011
, “
Design Optimization and Performance Studies of an Adult Scale Viscous Impeller Pump for Powered Fontan in an Idealized Total Cavopulmonary Connection
,”
Cardiovasc. Eng. Technol.
,
2
(
4
), pp.
237
243
.
39.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
081002
.
40.
Soares
,
J. S.
,
Sheriff
,
J.
, and
Bluestein
,
D.
,
2013
, “
A Novel Mathematical Model of Activation and Sensitization of Platelets Subjected to Dynamic Stress Histories
,”
Biomech. Model. Mechanobiol.
,
12
(
6
), pp.
1127
1141
.
41.
De Wachter
,
D.
, and
Verdonck
,
P.
,
2002
, “
Numerical Calculation of Hemolysis Levels in Peripheral Hemodialysis Cannulas
,”
Artif. Organs
,
26
(
7
), pp.
576
582
.
42.
Untaroiu
,
A.
,
Throckmorton
,
A. L.
,
Patel
,
S. M.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, and
Olsen
,
D. B.
,
2005
, “
Numerical and Experimental Analysis of an Axial Flow Left Ventricular Assist Device: The Influence of the Diffuser on Overall Pump Performance
,”
Artif. Organs
,
29
(
7
), pp.
581
591
.
43.
Giridharan
,
G. A.
,
Koenig
,
S. C.
,
Kennington
,
J.
,
Sobieski
,
M. A.
,
Chen
,
J.
,
Frankel
,
S. H.
, and
Rodefeld
,
M. D.
,
2013
, “
Performance Evaluation of a Pediatric Viscous Impeller Pump for Fontan Cavopulmonary Assist
,”
J. Thorac. Cardiovasc. Surg.
,
145
(
1
), pp.
249
257
.
44.
Nakamura
,
M.
,
Bessho
,
S.
, and
Wada
,
S.
,
2014
, “
Analysis of Red Blood Cell Deformation Under Fast Shear Flow for Better Estimation of Hemolysis
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
1
), pp.
42
54
.
45.
Chen
,
Y.
, and
Sharp
,
M. K.
,
2011
, “
A Strain-Based Flow-Induced Hemolysis Prediction Model Calibrated by In Vitro Erythrocyte Deformation Measurements
,”
Artif. Organs
,
35
(
2
), pp.
145
156
.
46.
Chen
,
Y.
,
Kent
,
T. L.
, and
Sharp
,
M. K.
,
2013
, “
Testing of Models of Flow-Induced Hemolysis in Blood Flow Through Hypodermic Needles
,”
Artif. Organs
,
37
(
3
), pp.
256
266
.
47.
Arora
,
D.
,
Behr
,
M.
, and
Pasquali
,
M.
,
2004
, “
A Tensor-Based Measure for Estimating Blood Damage
,”
Artif. Organs
,
28
(
11
), pp.
1002
1015
.
48.
Chiu
,
W. C.
,
Girdhar
,
G.
,
Xenos
,
M.
,
Alemu
,
Y.
,
Soares
,
J. S.
,
Einav
,
S.
,
Slepian
,
M.
, and
Bluestein
,
D.
,
2014
, “
Thromboresistance Comparison of the HeartMate II Ventricular Assist Device With the Device Thrombogenicity Emulation-Optimized HeartAssist 5 VAD
,”
ASME J. Biomech. Eng.
,
136
(
2
), pp.
0210141
0210149
.
49.
Shadden
,
S. C.
, and
Arzani
,
A.
,
2015
, “
Lagrangian Postprocessing of Computational Hemodynamics
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
41
58
.
50.
Marom
,
G.
, and
Bluestein
,
D.
,
2016
, “
Lagrangian Methods for Blood Damage Estimation in Cardiovascular Devices—How Numerical Implementation Affects the Results
,”
Expert Rev. Med. Devices
,
13
(
2
), pp.
113
122
.
51.
Zhang
,
T.
,
Taskin
,
M. E.
,
Fang
,
H.-B.
,
Pampori
,
A.
,
Jarvik
,
R.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2011
, “
Study of Flow-Induced Hemolysis Using Novel Couette-Type Blood-Shearing Devices
,”
Artif. Organs
,
35
(
12
), pp.
1180
1186
.
52.
Farinas
,
M. I.
,
Garon
,
A.
,
Lacasse
,
D.
, and
N'Dri
,
D.
,
2006
, “
Asymptotically Consistent Numerical Approximation of Hemolysis
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
688
696
.
53.
Lee
,
S. S.
,
Yim
,
Y.
,
Ahn
,
K. H.
, and
Lee
,
S. J.
,
2009
, “
Extensional Flow-Based Assessment of Red Blood Cell Deformability Using Hyperbolic Converging Microchannel
,”
Biomed. Microdevices
,
11
(
5
), pp.
1021
1027
.
54.
Down
,
L. A.
,
Papavassiliou
,
D. V.
, and
O'Rear
,
E. A.
,
2011
, “
Significance of Extensional Stresses to Red Blood Cell Lysis in a Shearing Flow
,”
Ann. Biomed. Eng.
,
39
(
6
), pp.
1632
1642
.
55.
Yeleswarapu
,
K. K.
,
Antaki
,
J. F.
,
Kameneva
,
M. V.
, and
Rajagopal
,
K. R.
,
1995
, “
A Mathematical Model for Shear-Induced Hemolysis
,”
Artif. Organs
,
19
(
7
), pp.
576
582
.
56.
Poorkhalil
,
A.
,
Amoabediny
,
G.
,
Tabesh
,
H.
,
Behbahani
,
M.
, and
Mottaghy
,
K.
,
2016
, “
A New Approach for Semiempirical Modeling of Mechanical Blood Trauma
,”
Int. J. Artif. Organs
,
39
(
4
), pp.
171
177
.
57.
Vitale
,
F.
,
Nam
,
J.
,
Turchetti
,
L.
,
Behr
,
M.
,
Raphael
,
R.
,
Annesini
,
M. C.
, and
Pasquali
,
M.
,
2014
, “
A Multiscale, Biophysical Model of Flow-Induced Red Blood Cell Damage
,”
AIChE J.
,
60
(
4
), pp.
1509
1516
.
You do not currently have access to this content.