The stability of the arteries under in vivo pressure and axial tension loads is essential to normal arterial function, and lumen collapse due to buckling can hinder the blood flow. The objective of this study was to develop the lumen buckling equation for nonlinear anisotropic thick-walled arteries to determine the effect of axial tension. The theoretical equation was developed using exponential Fung strain function, and the effects of axial tension and residual stress on the critical buckling pressure were illustrated for porcine coronary arteries. The buckling behavior was also simulated using finite-element analysis. Our results demonstrated that lumen collapse of arteries could occur when the transmural pressure is negative and exceeded a critical value. This value depends upon the axial stretch ratio and material properties of the arterial wall. Axial tensions show a biphasic effect on the critical buckling pressure. The lumen aspect ratio of arteries increases nonlinearly with increasing external pressure beyond the critical value as the lumen collapses. These results enhance our understanding of artery lumen collapse behavior.

References

References
1.
Fung
,
Y. C.
,
1997
,
Biomechanics: Circulation
,
Springer
,
New York
.
2.
Han
,
H. C.
,
Chesnutt
,
J. K.
,
Garcia
,
J. R.
,
Liu
,
Q.
, and
Wen
,
Q.
,
2013
, “
Artery Buckling: New Phenotypes, Models, and Applications
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1399
1410
.
3.
Lee
,
M. S.
, and
Chen
,
C. H.
,
2015
, “
Myocardial Bridging: An Up-to-Date Review
,”
J. Invasive Cardiol.
,
27
(
11
), pp.
521
528
.
4.
Corban
,
M. T.
,
Hung
,
O. Y.
,
Eshtehardi
,
P.
,
Rasoul-Arzrumly
,
E.
,
McDaniel
,
M.
,
Mekonnen
,
G.
,
Timmins
,
L. H.
,
Lutz
,
J.
,
Guyton
,
R. A.
, and
Samady
,
H.
,
2014
, “
Myocardial Bridging: Contemporary Understanding of Pathophysiology With Implications for Diagnostic and Therapeutic Strategies
,”
J. Am. Coll. Cardiol.
,
63
(
22
), pp.
2346
2355
.
5.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
,
2001
, “
Steady Flow and Wall Compression in Stenotic Arteries: A Three-Dimensional Thick-Wall Model With Fluid-Wall Interactions
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
548
557
.
6.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
,
2002
, “
Simulating Cyclic Artery Compression Using a 3D Unsteady Model With Fluid–Structure Interactions
,”
Comput. Struct.
,
80
(20–21), pp.
1651
1665
.
7.
Downing
,
J. M.
, and
Ku
,
D. N.
,
1997
, “
Effects of Frictional Losses and Pulsatile Flow on the Collapse of Stenotic Arteries
,”
ASME J. Biomech. Eng.
,
119
(
3
), pp.
317
324
.
8.
Garcia
,
J. R.
,
Lamm
,
S. D.
, and
Han
,
H. C.
,
2013
, “
Twist Buckling Behavior of Arteries
,”
Biomech. Model. Mechanobiol.
,
12
(
5
), pp.
915
927
.
9.
Han
,
H. C.
,
2009
, “
The Theoretical Foundation for Artery Buckling Under Internal Pressure
,”
ASME J. Biomech. Eng.
,
131
(
12
), p.
124501
.
10.
Aoki
,
T.
, and
Ku
,
D. N.
,
1993
, “
Collapse of Diseased Arteries With Eccentric Cross Section
,”
J. Biomech.
,
26
(
2
), pp.
133
142
.
11.
Luo
,
X. Y.
, and
Pedley
,
T. J.
,
1996
, “
A Numerical Simulation of Unsteady Flow in a Two-Dimensional Collapsible Channel
,”
J. Fluid Mech.
,
314
, pp.
191
225
.
12.
Marzo
,
A.
,
Luo
,
X. Y.
, and
Bertram
,
C. D.
,
2005
, “
Three-Dimensional Collapse and Steady Flow in Thick-Walled Flexible Tubes
,”
J. Fluids Struct.
,
20
(
6
), pp.
817
835
.
13.
Elad
,
D.
,
Sahar
,
M.
,
Avidor
,
J. M.
, and
Einav
,
S.
,
1992
, “
Steady Flow Through Collapsible Tubes: Measurements of Flow and Geometry
,”
ASME J. Biomech. Eng.
,
114
(
1
), pp.
84
91
.
14.
Bertram
,
C. D.
,
1987
, “
The Effects of Wall Thickness, Axial Strain and End Proximity on the Pressure-Area Relation of Collapsible Tubes
,”
J. Biomech.
,
20
(
9
), pp.
863
876
.
15.
Jackson
,
Z. S.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
,
2002
, “
Wall Tissue Remodeling Regulates Longitudinal Tension in Arteries
,”
Circ. Res.
,
90
(
8
), pp.
918
925
.
16.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1995
, “
Longitudinal Strain of Canine and Porcine Aortas
,”
J. Biomech.
,
28
(
5
), pp.
637
641
.
17.
Horny
,
L.
,
Adamek
,
T.
,
Gultova
,
E.
,
Zitny
,
R.
,
Vesely
,
J.
,
Chlup
,
H.
, and
Konvickova
,
S.
,
2011
, “
Correlations Between Age, Prestrain, Diameter and Atherosclerosis in the Male Abdominal Aorta
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
2128
2132
.
18.
Nichols
,
W. W.
, and
O'Rourke
,
M. F.
,
1998
,
McDonald's Blood Flow in Arteries: Theoretical, Experimental, and Clinical Principles
,
4th ed.
,
Arnold Publisher
,
London
, Chap. 16.
19.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
Verlag,
New York
.
20.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1996
, “
Direct Measurement of Transverse Residual Strains in Aorta
,”
Am. J. Physiol.
,
270
(
2 Pt 2
), pp.
H750
H759
.
21.
Lee
,
A. Y.
,
Han
,
B.
,
Lamm
,
S. D.
,
Fierro
,
C. A.
, and
Han
,
H. C.
,
2012
, “
Effects of Elastin Degradation and Surrounding Matrix Support on Artery Stability
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
302
(
4
), pp.
H873
H884
.
22.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
23.
Liu
,
Q.
,
Wen
,
Q.
,
Mottahedi
,
M.
, and
Han
,
H.-C.
,
2014
, “
Artery Buckling Analysis Using a Four-Fiber Wall Model
,”
J. Biomech.
,
47
(
11
), pp.
2790
2796
.
24.
Wang
,
C.
,
Garcia
,
M.
,
Lu
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
,
2006
, “
Three-Dimensional Mechanical Properties of Porcine Coronary Arteries: A Validated Two-Layer Model
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
291
(
3
), pp.
H1200
H1209
.
25.
Lee
,
A. Y.
,
Sanyal
,
A.
,
Xiao
,
Y.
,
Shadfan
,
R.
, and
Han
,
H. C.
,
2014
, “
Mechanical Instability of Normal and Aneurysmal Arteries
,”
J. Biomech.
,
47
(
16
), pp.
3868
3875
.
26.
Datir
,
P.
,
Lee
,
A. Y.
,
Lamm
,
S. D.
, and
Han
,
H. C.
,
2011
, “
Effects of Geometric Variations on the Buckling of Arteries
,”
Int. J. Appl. Mech.
,
3
(
2
), pp.
385
406
.
27.
Van Epps
,
J. S.
, and
Vorp
,
D. A.
,
2008
, “
A New Three-Dimensional Exponential Material Model of the Coronary Arterial Wall to Include Shear Stress Due to Torsion
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051001
.
28.
Ateshian
,
G. A.
, and
Costa
,
K. D.
,
2009
, “
A Frame-Invariant Formulation of Fung Elasticity
,”
J. Biomech.
,
42
(
6
), pp.
781
785
.
29.
Drzewiecki
,
G.
,
Field
,
S.
,
Moubarak
,
I.
, and
Li
,
J. K.
,
1997
, “
Vessel Growth and Collapsible Pressure-Area Relationship
,”
Am. J. Physiol.
,
273
(
4 Pt 2
), pp.
H2030
H2043
.
30.
Hecht
,
A. M.
,
Yeh
,
H.
, and
Chung
,
S. M.
,
1980
, “
Collapse of Arteries Subjected to an External Band of Pressure
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
8
22
.
31.
Dobrin
,
P. B.
,
Schwarcz
,
T. H.
, and
Mrkvicka
,
R.
,
1990
, “
Longitudinal Retractive Force in Pressurized Dog and Human Arteries
,”
J. Surg. Res.
,
48
(
2
), pp.
116
120
.
32.
Han
,
H. C.
,
Zhao
,
L.
,
Huang
,
M.
,
Hou
,
L. S.
,
Huang
,
Y. T.
, and
Kuang
,
Z. B.
,
1998
, “
Postsurgical Changes of the Opening Angle of Canine Autogenous Vein Graft
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
211
216
.
33.
Martinez
,
R.
,
Fierro
,
C. A.
,
Shireman
,
P. K.
, and
Han
,
H.-C.
,
2010
, “
Mechanical Buckling of Veins Under Internal Pressure
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1345
1353
.
34.
Bertram
,
C. D.
,
Macaskill
,
C.
, and
Moore
,
J. E.
, Jr.
,
2011
, “
Simulation of a Chain of Collapsible Contracting Lymphangions With Progressive Valve Closure
,”
ASME J. Biomech. Eng.
,
133
(
1
), p.
011008
.
35.
Ku
,
D. N.
,
Ma
,
P. P.
,
McConnel
,
F. M.
, and
Cerenko
,
D.
,
1990
, “
A Kinematic Study of the Oropharyngeal Swallowing of a Liquid
,”
Ann. Biomed. Eng.
,
18
(
6
), pp.
655
669
.
36.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
,
3
(
6
), pp.
15
35
.
37.
Yu
,
Q.
,
Zhou
,
J.
, and
Fung
,
Y. C.
,
1993
, “
Neutral Axis Location in Bending and Young's Modulus of Different Layers of Arterial Wall
,”
Am. J. Physiol.
,
265
(
1 Pt 2
), pp.
H52
H60
.
38.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2012
, “
Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
23
38
.
39.
Liu
,
Q.
, and
Han
,
H. C.
,
2012
, “
Mechanical Buckling of Artery Under Pulsatile Pressure
,”
J. Biomech.
,
45
(
7
), pp.
1192
1198
.
You do not currently have access to this content.