Synthetic biomechanical test specimens are frequently used for preclinical evaluation of implant performance, often in combination with numerical modeling, such as finite-element (FE) analysis. Commercial and freely available FE packages are widely used with three FE packages in particular gaining popularity: abaqus (Dassault Systèmes, Johnston, RI), ansys (ANSYS, Inc., Canonsburg, PA), and febio (University of Utah, Salt Lake City, UT). To the best of our knowledge, no study has yet made a comparison of these three commonly used solvers. Additionally, despite the femur being the most extensively studied bone in the body, no freely available validated model exists. The primary aim of the study was primarily to conduct a comparison of mesh convergence and strain prediction between the three solvers (abaqus, ansys, and febio) and to provide validated open-source models of a fourth-generation composite femur for use with all the three FE packages. Second, we evaluated the geometric variability around the femoral neck region of the composite femurs. Experimental testing was conducted using fourth-generation Sawbones® composite femurs instrumented with strain gauges at four locations. A generic FE model and four specimen-specific FE models were created from CT scans. The study found that the three solvers produced excellent agreement, with strain predictions being within an average of 3.0% for all the solvers (r2 > 0.99) and 1.4% for the two commercial codes. The average of the root mean squared error against the experimental results was 134.5% (r2 = 0.29) for the generic model and 13.8% (r2 = 0.96) for the specimen-specific models. It was found that composite femurs had variations in cortical thickness around the neck of the femur of up to 48.4%. For the first time, an experimentally validated, finite-element model of the femur is presented for use in three solvers. This model is freely available online along with all the supporting validation data.

References

References
1.
Royal College of Physicians
,
2015
, “
National Hip Fracture Database (NHFD) Annual Report
,”
Royal College of Physicians
, London.
2.
NJR Steering Committee
,
2015
, “
National Joint Registry for England, Wales, Northern Ireland: 12th Annual Report
,”
NJR Steering Committee
, Hemel Hempstead, UK.
3.
Fernandez
,
M. A.
,
Griffin
,
X. L.
, and
Costa
,
M. L.
,
2015
, “
Hip Fracture Surgery
,”
Bone Joint J.
,
97-B
(
7
), pp.
875
879
.
4.
Miles
,
B.
,
Kolos
,
E.
,
Walter
,
W. L.
,
Appleyard
,
R.
,
Li
,
Q.
,
Chen
,
Y.
, and
Ruys
,
A. J.
,
2015
, “
Subject-Specific Finite Element Model With an Optical Tracking System in Total Hip Replacement Surgery
,”
Proc. Inst. Mech. Eng., Part H
,
229
(
4
), pp.
280
290
.
5.
Taddei
,
F.
,
Cristofolini
,
L.
,
Martelli
,
S.
,
Gill
,
H. S.
, and
Viceconti
,
M.
,
2006
, “
Subject-Specific Finite Element Models of Long Bones: An In Vitro Evaluation of the Overall Accuracy
,”
J. Biomech.
,
39
(
13
), pp.
2457
2467
.
6.
Anderson
,
A. E.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Verification, Validation and Sensitivity Studies in Computational Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
3
), pp.
171
184
.
7.
Cristofolini
,
L.
,
Schileo
,
E.
,
Juszczyk
,
M.
,
Taddei
,
F.
,
Martelli
,
S.
, and
Viceconti
,
M.
,
2010
, “
Mechanical Testing of Bones: The Positive Synergy of Finite-Element Models and In Vitro Experiments
,”
Philos. Trans. Ser. A
,
368
(
1920
), pp.
2725
2763
.
8.
Prendergast
,
P. J.
,
1997
, “
Finite Element Models in Tissue Mechanics and Orthopaedic Implant Design
,”
Clin. Biomech.
,
12
(
6
), pp.
343
366
.
9.
Viceconti
,
M.
,
Olsen
,
S.
,
Nolte
,
L. P.
, and
Burton
,
K.
,
2005
, “
Extracting Clinically Relevant Data From Finite Element Simulations
,”
Clin. Biomech.
,
20
(
5
), pp.
451
454
.
10.
Babuska
,
I.
, and
Oden
,
J. T.
,
2004
, “
Verification and Validation in Computational Engineering and Science: Basic Concepts
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
36–38
), pp.
4057
4066
.
11.
Elfar
,
J.
, and
Stanbury
,
S.
,
2014
, “
Composite Bone Models in Orthopaedic Surgery Research and Education
,”
J. Am. Acad. Orthop. Surg.
,
22
(
2
), pp.
111
120
.
12.
Gardner
,
M. P.
,
Chong
,
A. C. M.
,
Pollock
,
A. G.
, and
Wooley
,
P. H.
,
2010
, “
Mechanical Evaluation of Large-Size Fourth-Generation Composite Femur and Tibia Models
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
613
620
.
13.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Cappello
,
A.
, and
Toni
,
A.
,
1996
, “
Mechanical Validation of Whole Bone Composite Femur Models
,”
J. Biomech.
,
29
(
4
), pp.
525
535
.
14.
Heiner
,
A. D.
,
2008
, “
Structural Properties of Fourth-Generation Composite Femurs and Tibias
,”
J. Biomech.
,
41
(
15
), pp.
3282
3284
.
15.
Dunlap
,
J. T.
,
Chong
,
A. C. M.
,
Lucas
,
G. L.
, and
Cooke
,
F. W.
,
2008
, “
Structural Properties of a Novel Design of Composite Analogue Humeri Models
,”
Ann. Biomed. Eng.
,
36
(
11
), pp.
1922
1926
.
16.
Grover
,
P.
,
Albert
,
C.
,
Wang
,
M.
, and
Harris
,
G. F.
,
2011
, “
Mechanical Characterization of Fourth Generation Composite Humerus
,”
Proc. Inst. Mech. Eng., Part H
,
225
(
12
), pp.
1169
1176
.
17.
Viceconti
,
M.
,
Casali
,
M.
,
Massari
,
B.
,
Cristofolini
,
L.
,
Bassini
,
S.
, and
Toni
,
A.
,
1996
, “
The ‘Standardized Femur Program’ Proposal for a Reference Geometry to be Used for the Creation of Finite Element Models of the Femur
,”
J. Biomech.
,
29
(
9
), p.
1241
.
18.
Meng
,
Q.
,
Jin
,
Z.
,
Fisher
,
J.
, and
Wilcox
,
R.
,
2013
, “
Comparison Between FEBio and Abaqus for Biphasic Contact Problems
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
9
), pp.
1009
1019
.
19.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Rawlins
,
D. S.
, and
Weiss
,
J. A.
,
2009
, “
A Comparison of FEBio, ABAQUS, and NIKE3D Results for a Suite of Verification Problems
,” SCI Institute Technical
Report No. UUSCI-2009-009
.
20.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.
21.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
22.
ANSYS
,
2013
, “
ANSYS 15.0 Mechanical User's Guide
,” ANSYS, Inc., Canonsburg, PA.
23.
Agilent Technologies
,
1999
, “
Application Note 290-1: Practical Strain Gage Measurements
,” Agilent Technologies, Manchester, UK, accessed May 3, 2016, www.omega.co.uk/techref/pdf/StrainGage_Measurement.pdf
24.
MatWeb
,
2015
, “
MatWeb Material Property Data. Sawbones Technical Data Sheets
,”
MatWeb LLC
,
Blacksburg, VA
, accessed May 12, 2015, www.matweb.com
25.
Pacific Research Labora tories
,
2015
, “
Sawbones Biomechanical Test Materials
,”
Pacific Research Laboratories
,
Vashon, Island, WA
, accessed Feb. 2, 2016, http://www.sawbones.com/UserFiles/Docs/biomechanical_catalog.pdf
26.
Cappozzo
,
A.
,
Catani
,
F.
,
Della Croce
,
U.
, and
Leardini
,
A.
,
1995
, “
Position and Orientation in Space of Bones During Movement: Anatomical Frame Definition and Determination
,”
Clin. Biomech.
,
10
(
4
), pp.
171
178
.
27.
Pegg
,
E. C.
,
Murray
,
D. W.
,
Pandit
,
H. G.
,
O'Connor
,
J. J.
, and
Gill
,
H. S.
,
2013
, “
Fracture of Mobile Unicompartmental Knee Bearings: A Parametric Finite Element Study
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
11
), pp.
1213
1223
.
28.
Taddei
,
F.
,
Schileo
,
E.
,
Helgason
,
B.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2007
, “
The Material Mapping Strategy Influences the Accuracy of CT-Based Finite Element Models of Bones: An Evaluation Against Experimental Measurements
,”
Med. Eng. Phys.
,
29
(
9
), pp.
973
979
.
29.
Schileo
,
E.
,
Dall'Ara
,
E.
,
Taddei
,
F.
,
Malandrino
,
A.
,
Schotkamp
,
T.
,
Baleani
,
M.
, and
Viceconti
,
M.
,
2008
, “
An Accurate Estimation of Bone Density Improves the Accuracy of Subject-Specific Finite Element Models
,”
J. Biomech.
,
41
(
11
), pp.
2483
2491
.
30.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
.
31.
Martelli
,
S.
,
Pivonka
,
P.
, and
Ebeling
,
P. R.
,
2014
, “
Femoral Shaft Strains During Daily Activities: Implications for Atypical Femoral Fractures
,”
Clin. Biomech.
,
29
(
8
), pp.
869
876
.
32.
Pacific Research Laboratories
,
2013
, “
Sawbones Catalog
,”
Pacific Research Laboratories, Inc.
,
Vashon Island, WA
.
33.
Salas
,
C.
,
Mercer
,
D.
,
DeCoster
,
T. A.
, and
Taha
,
M. M. R.
,
2011
, “
Experimental and Probabilistic Analysis of Distal Femoral Periprosthetic Fracture: A Comparison of Locking Plate and Intramedullary Nail Fixation—Part B: Probabilistic Investigation
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
2
), pp.
175
182
.
34.
Wieding
,
J.
,
Souffrant
,
R.
,
Fritsche
,
A.
,
Mittelmeier
,
W.
, and
Bader
,
R.
,
2012
, “
Finite Element Analysis of Osteosynthesis Screw Fixation in the Bone Stock: An Appropriate Method for Automatic Screw Modelling
,”
PLoS One
,
7
(
3
), p.
e33776
.
35.
Reimeringer
,
M.
,
Nuño
,
N.
,
Desmarais-Trépanier
,
C.
,
Lavigne
,
M.
, and
Vendittoli
,
P. A.
,
2012
, “
The Influence of Uncemented Femoral Stem Length and Design on Its Primary Stability: A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
11
), pp.
1221
1231
.
36.
Pal
,
B.
,
Gupta
,
S.
,
New
,
A. M. R.
, and
Browne
,
M.
,
2010
, “
Strain and Micromotion in Intact and Resurfaced Composite Femurs: Experimental and Numerical Investigations
,”
J. Biomech.
,
43
(
10
), pp.
1923
1930
.
37.
Pettersen
,
S. H.
,
Wik
,
T. S.
, and
Skallerud
,
B.
,
2009
, “
Subject Specific Finite Element Analysis of Stress Shielding Around a Cementless Femoral Stem
,”
Clin. Biomech.
,
24
(
2
), pp.
196
202
.
38.
Dickinson
,
A. S.
,
Taylor
,
A. C.
,
Ozturk
,
H.
, and
Browne
,
M.
,
2011
, “
Experimental Validation of a Finite Element Model of the Proximal Femur Using Digital Image Correlation and a Composite Bone Model
,”
ASME J. Biomech. Eng.
,
133
(
1
), p.
014504
.
39.
Samiezadeh
,
S.
,
Tavakkoli Avval
,
P.
,
Fawaz
,
Z.
, and
Bougherara
,
H.
,
2014
, “
Biomechanical Assessment of Composite Versus Metallic Intramedullary Nailing System in Femoral Shaft Fractures: A Finite Element Study
,”
Clin. Biomech.
,
29
(
7
), pp.
803
810
.
40.
Grassi
,
L.
,
Väänänen
,
S. P.
,
Amin Yavari
,
S.
,
Weinans
,
H.
,
Jurvelin
,
J. S.
,
Zadpoor
,
A. A.
, and
Isaksson
,
H.
,
2013
, “
Experimental Validation of Finite Element Model for Proximal Composite Femur Using Optical Measurements
,”
J. Mech. Behav. Biomed. Mater.
,
21
, pp.
86
94
.
41.
Gilroy
,
D.
,
Young
,
A. M.
,
Phillips
,
A.
,
Wheel
,
M.
, and
Riches
,
P. E.
,
2014
, “
Characterisation and Validation of SawbonesTM Artificial Composite Femur Material
,”
7th World Congress of Biomechanics
, Boston, MA, ID No. 51226.
42.
Chong
,
A. C. M.
,
Friis
,
E. A.
,
Ballard
,
G. P.
,
Czuwala
,
P. J.
, and
Cooke
,
F. W.
,
2007
, “
Fatigue Performance of Composite Analogue Femur Constructs Under High Activity Loading
,”
Ann. Biomed. Eng.
,
35
(
7
), pp.
1196
1205
.
43.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D'Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.
44.
Bessho
,
M.
,
Ohnishi
,
I.
,
Matsuyama
,
J.
,
Matsumoto
,
T.
,
Imai
,
K.
, and
Nakamura
,
K.
,
2007
, “
Prediction of Strength and Strain of the Proximal Femur by a CT-Based Finite Element Method
,”
J. Biomech.
,
40
(
8
), pp.
1745
1753
.
45.
Trabelsi
,
N.
,
Yosibash
,
Z.
,
Wutte
,
C.
,
Augat
,
P.
, and
Eberle
,
S.
,
2011
, “
Patient-Specific Finite Element Analysis of the Human Femur-A Double-Blinded Biomechanical Validation
,”
J. Biomech.
,
44
(
9
), pp.
1666
1672
.
46.
Trabelsi
,
N.
, and
Yosibash
,
Z.
,
2011
, “
Patient-Specific Finite-Element Analyses of the Proximal Femur With Orthotropic Material Properties Validated by Experiments
,”
ASME J. Biomech. Eng.
,
133
(
6
), p.
061001
.
You do not currently have access to this content.