When applying models to patient-specific situations, the impact of model input uncertainty on the model output uncertainty has to be assessed. Proper uncertainty quantification (UQ) and sensitivity analysis (SA) techniques are indispensable for this purpose. An efficient approach for UQ and SA is the generalized polynomial chaos expansion (gPCE) method, where model response is expanded into a finite series of polynomials that depend on the model input (i.e., a meta-model). However, because of the intrinsic high computational cost of three-dimensional (3D) cardiovascular models, performing the number of model evaluations required for the gPCE is often computationally prohibitively expensive. Recently, Blatman and Sudret (2010, “An Adaptive Algorithm to Build Up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis,” Probab. Eng. Mech., 25(2), pp. 183–197) introduced the adaptive sparse gPCE (agPCE) in the field of structural engineering. This approach reduces the computational cost with respect to the gPCE, by only including polynomials that significantly increase the meta-model’s quality. In this study, we demonstrate the agPCE by applying it to a 3D abdominal aortic aneurysm (AAA) wall mechanics model and a 3D model of flow through an arteriovenous fistula (AVF). The agPCE method was indeed able to perform UQ and SA at a significantly lower computational cost than the gPCE, while still retaining accurate results. Cost reductions ranged between 70–80% and 50–90% for the AAA and AVF model, respectively.

References

References
1.
Browne
,
L. D.
,
Griffin
,
P.
,
Bashar
,
K.
,
Walsh
,
S. R.
,
Kavanagh
,
E. G.
, and
Walsh
,
M. T.
,
2015
, “
In Vivo Validation of the in Silico Predicted Pressure Drop Across an Arteriovenous Fistula
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1275
1286
.
2.
Taylor
,
C. A.
,
Fonte
,
T. A.
, and
Min
,
J. K.
,
2013
, “
Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve scientific Basis
,”
J. Am. Coll. Cardiol.
,
61
(
22
), pp.
2233
2241
.
3.
Larrabide
,
I.
,
Aguilar
,
M.
,
Morales
,
H.
,
Geers
,
A.
,
Kulcsár
,
Z.
,
Rüfenacht
,
D.
, and
Frangi
,
A.
,
2013
, “
Intra-Aneurysmal Pressure and Flow Changes Induced by Flow Diverters: Relation to Aneurysm Size and Shape
,”
Am. J. Neuroradiol.
,
34
(
4
), pp.
816
822
.
4.
Zhang
,
Y.
,
Chong
,
W.
, and
Qian
,
Y.
,
2013
, “
Investigation of Intracranial Aneurysm Hemodynamics Following Flow Diverter Stent Treatment
,”
Med. Eng. Phys.
,
35
(
5
), pp.
608
615
.
5.
Vande Geest
,
J. P.
,
Di Martino
,
E. S.
,
Bohra
,
A.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
A Biomechanics-Based Rupture Potential Index for Abdominal Aortic Aneurysm Risk Assessment: Demonstrative Application
,”
Ann. N.Y. Acad. Sci.
,
1085
(
1
), pp.
11
21
.
6.
Pluijmert
,
M.
,
Kroon
,
W.
,
Rossi
,
A. C.
,
Bovendeerd
,
P. H. M.
, and
Delhaas
,
T.
,
2012
, “
Why Sit Works: Normal Function Despite Typical Myofiber Pattern in Situs Inversus Totalis (sit) Hearts Derived by Shear-Induced Myofiber Reorientation
,”
PLoS Comput. Biol.
,
8
(
7
), p.
e1002611
.
7.
Raghavan
,
M.
,
Vorp
,
D. A.
,
Federle
,
M. P.
,
Makaroun
,
M. S.
, and
Webster
,
M. W.
,
2000
, “
Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
31
(
4
), pp.
760
769
.
8.
Huberts
,
W.
,
Bode
,
A.
,
Kroon
,
W.
,
Planken
,
R.
,
Tordoir
,
J.
,
Van de Vosse
,
F.
, and
Bosboom
,
E.
,
2012
, “
A Pulse Wave Propagation Model to Support Decision-Making in Vascular Access Planning in the Clinic
,”
Med. Eng. Phys.
,
34
(
2
), pp.
233
248
.
9.
Mulder
,
G.
,
2011
, “
Patient-Specific Modelling of the Cerebral Circulation for Aneurysm Risk Assessment
,”
Ph.D thesis
, Eindhoven University of Technology, Eindhoven, The Netherlands.http://131.155.54.17/mate/pdfs/13267.pdf
10.
Vande Geest
,
J. P.
,
Wang
,
D. H. J.
,
Wisniewski
,
S. R.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Towards a Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
34
(
7
), pp.
1098
1106
.
11.
Speelman
,
L.
,
Bosboom
,
E.
,
Schurink
,
G.
,
Hellenthal
,
F.
,
Buth
,
J.
,
Breeuwer
,
M.
,
Jacobs
,
M.
, and
van de Vosse
,
F.
,
2008
, “
Patient-Specific AAA Wall Stress Analysis: 99-Percentile Versus Peak Stress
,”
Eur. J. Vasc. Endovasc. Surg.
,
36
(
6
), pp.
668
676
.
12.
Gasser
,
T.
,
Auer
,
M.
,
Labruto
,
F.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2010
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms: Model Complexity Versus Predictability of Finite Element Simulations
,”
Eur. J. Vasc. Endovasc. Surg.
,
40
(
2
), pp.
176
185
.
13.
Center for Devices and Radiological Health
,
2014
, “
Reporting of Computational Modeling Studies in Medical Device Submissions (Draft)
,” United States Food and Drug Administration, Report No. FDA-2013-D-1530-0002.
14.
Council for Regulatory Environmental Modeling
,
2009
, “
Guidance on the Development, Evaluation, and Application of Environmental Models
,” United States Environmental Protection Agency, Report No. EPA/100/K-09/003.
15.
European Commissio
n,
2015
, “
Better Regulation Guidelines
,” Regulatory Fitness and Performance Programme, Report No. SWD(2015).
16.
Saltelli
,
A.
,
Ratto
,
M.
,
Andresa
,
T.
,
Campolongo
,
F.
,
Caribonia
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis, the Primer
,
Wiley
, Chichester, UK.
17.
Chen
,
P.
,
Quarteroni
,
A.
, and
Rozza
,
G.
,
2013
, “
Simulation-Based Uncertainty Quantification of Human Arterial Network Hemodynamics
,”
Int. J. Numer. Method Biomed. Eng.
,
29
(
6
), pp.
698
721
.
18.
Donders
,
W. P.
,
Huberts
,
W.
,
van de Vosse
,
F. N.
, and
Delhaas
,
T.
,
2015
, “
Personalization of Models With Many Model Parameters: An Efficient Sensitivity Analysis Approach
,”
Int. J. Numer. Methods Biomed. Eng.
,
31
(
10
), p.
e02727
.
19.
Eck
, V
. G.
,
Feinberg
,
J.
,
Langtangen
,
H. P.
, and
Hellevik
,
L. R.
,
2015
, “
Stochastic Sensitivity Analysis for Timing and Amplitude of Pressure Waves in the Arterial System
,”
Int. J. Numer. Methods Biomed. Eng.
,
31
(
4
)
, p.
e02711
.
20.
Huberts
,
W.
,
Donders
,
W. P.
,
Delhaas
,
T.
, and
van de Vosse
,
F. N.
,
2014
, “
Applicability of the Polynomial Chaos Expansion Method for Personalization of a Cardiovascular Pulse Wave Propagation Model
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
12
), pp.
1679
1704
.
21.
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2011
, “
A Stochastic Collocation Method for Uncertainty Quantification and Propagation in Cardiovascular Simulations
,”
ASME J. Biomech. Eng.
,
133
(
3
)
, p.
031001
.
22.
Xiu
,
D.
,
2007
, “
Efficient Collocational Approach for Parametric Uncertainty Analysis
,”
Commun. Comput. Phys.
,
2
(
2
), pp.
293
309
.http://www.global-sci.com/issue/abstract/readabs.php?vol=2&page=293&year=2007&issue=2&ppage=309
23.
Crestaux
,
T.
,
Le Maître
,
O.
, and
Martinez
,
J.-M.
,
2009
, “
Polynomial Chaos Expansion for Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
94
(
7
), pp.
1161
1172
.
24.
Blatman
,
G.
,
2009
, “
Adaptive Sparse Polynomial Chaos Expansions for Uncertainty Propagation and Sensitivity Analysis
,” Doctoral thesis, Blaise Pascal University, Aubière, France.
25.
Choi
,
S.-K.
,
Grandhi
,
R. V.
,
Canfield
,
R. A.
, and
Pettit
,
C. L.
,
2004
, “
Polynomial Chaos Expansion With Latin Hypercube Sampling for Estimating Response Variability
,”
AIAA J.
,
42
(
6
), pp.
1191
1198
.
26.
Knio
,
O. M.
, and
Le Maître
,
O. P.
,
2006
, “
Uncertainty Propagation in CFD Using Polynomial Chaos Decomposition
,”
Fluid Dyn. Res.
,
38
(
9
), pp.
616
640
.
27.
Xiu
,
D.
, and
Karniadakis
,
G. E. M.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
28.
Blatman
,
G.
, and
Sudret
,
B.
,
2011
, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
,
230
(
6
), pp.
2345
2367
.
29.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
30.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
Efficient Computation of Global Sensitivity Indices Using Sparse Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
95
(
11
), pp.
1216
1229
.
31.
Doostan
,
A.
, and
Owhadi
,
H.
,
2011
, “
A Non-Adapted Sparse Approximation of PDEs With Stochastic Inputs
,”
J. Comput. Phys.
,
230
(
8
), pp.
3015
3034
.
32.
Ma
,
X.
, and
Zabaras
,
N.
,
2009
, “
An Adaptive Hierarchical Sparse Grid Collocation Method for the Solution of Stochastic Differential Equations
,”
J. Comput. Phys.
,
228
(8), pp.
1
59
.
33.
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2005
, “
An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations
,”
J. Comput. Phys.
,
209
(
2
), pp.
617
642
.
34.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
An Adaptive Algorithm to Build Up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis
,”
Probab. Eng. Mech.
,
25
(
2
), pp.
183
197
.
35.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2003
, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
187
(
1
), p.
137167
.
36.
Eck
,
V.
,
Donders
,
W.
,
Sturdy
,
J.
,
Feinberg
,
J.
,
Delhaas
,
T.
,
Hellevik
,
L.
, and
Huberts
,
W.
,
2015
, “
A Review and Guide to Uncertainty Quantification and Sensitivity Analysis for Cardiovascular Applications
,”
Int. J. Numer. Methods Biomed. Eng.
,
32
(8), p.
e02755
.
37.
Dubreuil
,
S.
,
Berveiller
,
M.
,
Petitjean
,
F.
, and
Salaün
,
M.
,
2014
, “
Construction of Bootstrap Confidence Intervals on Sensitivity Indices Computed by Polynomial Chaos Expansion
,”
Reliab. Eng. Syst. Saf.
,
121
, pp.
263
275
.
38.
Sobol
, I
. M.
,
1967
, “
On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals
,”
USSR Comput. Math. & Math. Phys.
,
7
(
4
), pp.
86
112
.
39.
Budd
,
J. S.
,
Finch
,
D.
, and
Carter
,
P.
,
1989
, “
A Study of the Mortality From Ruptured Abdominal Aortic Aneurysms in a District Community
,”
Eur. J. Vasc. Surg.
,
3
(
4
), pp.
351
354
.
40.
de Putter
,
S.
,
Wolters
,
B.
,
Rutten
,
M.
,
Breeuwer
,
M.
,
Gerritsen
,
F.
, and
van de Vosse
,
F.
,
2007
, “
Patient-Specific Initial Wall Stress in Abdominal Aortic Aneurysms With a Backward Incremental Method
,”
J. Biomech.
,
40
(
5
)
, p.
10811090
.
41.
Fillinger
,
M. F.
,
Raghavan
,
M.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
,
2002
, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
,
36
(
3
), p.
589597
.
42.
Kok
,
A. M.
,
Nguyen
, V
. L.
,
Speelman
,
L.
,
Brands
,
P. J.
,
Schurink
,
G.-W. H.
,
van de Vosse
,
F. N.
, and
Lopata
,
R. G.
,
2015
, “
Feasibility of Wall Stress Analysis of Abdominal Aortic Aneurysms Using Three-Dimensional Ultrasound
,”
J. Vasc. Surg.
,
61
(
5
), pp.
1175
1184
.
43.
Raghavan
,
M.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.
44.
Speelman
,
L.
,
Bosboom
,
E.
,
Schurink
,
G.
,
Buth
,
J.
,
Breeuwer
,
M.
,
Jacobs
,
M.
, and
van de Vosse
,
F.
,
2009
, “
Initial Stress and Nonlinear Material Behavior in Patient-Specific AAA Wall Stress Analysis
,”
J. Biomech.
,
42
(
11
), pp.
1713
1719
.
45.
Grassmann
,
A.
,
Gioberge
,
S.
,
Moeller
,
S.
, and
Brown
,
G.
,
2005
. “
ESRD Patients in 2004: Global Overview of Patient Numbers, Treatment Modalities and Associated Trends
,”
Nephrol. Dial. Transplant.
,
20
(
12
), pp.
2587
2593
.
46.
Tordoir
,
J.
,
Canaud
,
B.
,
Haage
,
P.
,
Konner
,
K.
,
Basci
,
A.
,
Fouque
,
D.
,
Kooman
,
J.
,
Martin-Malo
,
A.
,
Pedrini
,
L.
,
Pizzarelli
,
F.
,
Tattersall
,
J.
,
Vennegoor
,
M.
,
Wanner
,
C.
,
Wee
,
P. T.
, and
Vanholder
,
R.
,
2007
, “
European Best Practice Guidelines on Vascular Access
,”
Nephrol. Dial. Transplant.
,
22
(Suppl.
2
), pp.
ii88
ii117
.
47.
Moore
,
J.
,
Steinman
,
D.
,
Prakash
,
S.
,
Johnston
,
K.
, and
Ethier
,
C.
,
1999
, “
A Numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses
,”
ASME J. Biomech. Eng.
,
121
(
3
), pp.
265
272
.
48.
Van Canneyt
,
K.
,
Pourchez
,
T.
,
Eloot
,
S.
,
Guillame
,
C.
,
Bonnet
,
A.
,
Segers
,
P.
, and
Verdonck
,
P.
,
2010
, “
Hemodynamic Impact of Anastomosis Size and Angle in Side-to-End Arteriovenous Fistulae: A Computer Analysis
,”
J. Vasc. Access.
,
11
(
1
), pp.
52
58
.http://www.vascular-access.info/article/hemodynamic-impact-of-anastomosis-size-and-angle--in-side-to-end-arteriovenous-fistulae--a-computer-analysis-art006434
49.
Botti
,
L.
,
Van Canneyt
,
K.
,
Kaminsky
,
R.
,
Claessens
,
T.
,
Planken
,
R. N.
,
Verdonck
,
P.
,
Remuzzi
,
A.
, and
Antiga
,
L.
,
2013
, “
Numerical Evaluation and Experimental Validation of Pressure Drops Across a Patient-Specific Model of Vascular Access for Hemodialysis
,”
Cardiovasc. Eng. Technol.
,
4
(
4
), p.
485499
.
50.
Decorato
,
I.
,
Kharboutly
,
Z.
,
Vassallo
,
T.
,
Penrose
,
J.
,
Legallais
,
C.
, and
Salsac
,
A.-V.
,
2013
, “
Numerical Simulation of the Fluid Structure Interactions in a Compliant Patient-Specific Arteriovenous Fistula
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
2
), pp.
143
159
.
51.
Ene-Iordache
,
B.
,
Semperboni
,
C.
,
Dubini
,
G.
, and
Remuzzi
,
A.
,
2015
, “
Disturbed Flow in a Patient-Specific Arteriovenous Fistula for Hemodialysis: Multidirectional and Reciprocating Near-Wall Flow Patterns
,”
J. Biomech.
,
48
(
10
), pp.
2195
2200
.
52.
Westerhof
,
N.
,
Lankhaar
,
J. W.
, and
Westerhof
,
B. E.
,
2008
, “
The Arterial Windkessel
,”
Med. Biol. Eng. Comput.
,
47
(
2
), pp.
131
141
.
53.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
GMSH: A 3-D Finite Element Mesh Generator With Built-In Pre-and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.
54.
Hulsen
,
M. A.
,
2013
,
TFEM, A Toolkit for the Finite Element Method, User’s Manual
,
Eindhoven University of Technology
, Eindhoven, The Netherlands.
55.
Brooks
,
A. N.
, and
Hughes
,
T. J.
,
1982
, “
Streamline Upwind/Petrov–Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1
), pp.
199
259
.
56.
Codina
,
R.
,
Oñate
,
E.
, and
Cervera
,
M.
,
1992
, “
The Intrinsic Time for the Streamline Upwind/Petrov–Galerkin Formulation Using Quadratic Elements
,”
Comput. Methods Appl. Mech. Eng.
,
94
(
2
), pp.
239
262
.
57.
Schiavazzi
,
D. E.
,
Arbia
,
G.
,
Baker
,
C.
,
Hlavacek
,
A. M.
,
Hsia
,
T. Y.
,
Marsden
,
A. L.
, and
Vignon-Clementel
,
I. E.
, and
The Modeling of Congenital Hearts Alliance MOCHA
,
2016
, “
Uncertainty Quantification in Virtual Surgery Hemodynamics Predictions for Single Ventricle Palliation
,”
Int. J. Numer. Methods Biomed. Eng.
,
32
(
3
), p.
e02737
.
58.
Niederreiter
,
H.
,
1988
, “
Low-Discrepancy and Low-Dispersion Sequences
,”
J. Number Theory
,
30
(
1
), pp.
51
70
.
59.
Mai
,
C. V.
, and
Sudret
,
B.
,
2015
, “
Hierarchical Adaptive Polynomial Chaos Expansions
,”
1st International Conference on Uncertainty Quantification in Computational Sciences and Engineering
,
M.
Papadrakakis
,
V.
Papadopoulos
, and
G.
Stefanou
, eds., May, UNCECOMP, pp.
25
27
.http://arxiv.org/abs/1506.00461
You do not currently have access to this content.