Standing balanced reach is a fundamental task involved in many activities of daily living that has not been well analyzed quantitatively to assess and characterize the multisegmental nature of the body's movements. We developed a dynamic balanced reach test (BRT) to analyze performance in this activity; in which a standing subject is required to maintain balance while reaching and pointing to a target disk moving across a large projection screen according to a sum-of-sines function. This tracking and balance task is made progressively more difficult by increasing the disk's overall excursion amplitude. Using kinematic and ground reaction force data from 32 young healthy subjects, we investigated how the motions of the tracking finger and whole-body center of mass (CoM) varied in response to the motion of the disk across five overall disk excursion amplitudes. Group representative performance statistics for the cohort revealed a monotonically increasing root mean squared (RMS) tracking error (RMSE) and RMS deviation (RMSD) between whole-body CoM (projected onto the ground plane) and the center of the base of support (BoS) with increasing amplitude (p < 0.03). Tracking and CoM response delays remained constant, however, at 0.5 s and 1.0 s, respectively. We also performed detailed spectral analyses of group-representative response data for each of the five overall excursion amplitudes. We derived empirical and analytical transfer functions between the motion of the disk and that of the tracking finger and CoM, computed tracking and CoM responses to a step input, and RMSE and RMSD as functions of disk frequency. We found that for frequencies less than 1.0 Hz, RMSE generally decreased, while RMSE normalized to disk motion amplitude generally increased. RMSD, on the other hand, decreased monotonically. These findings quantitatively characterize the amplitude- and frequency-dependent nature of young healthy tracking and balance in this task. The BRT is not subject to floor or ceiling effects, overcoming an important deficiency associated with most research and clinical instruments used to assess balance. This makes a comprehensive quantification of young healthy balance performance possible. The results of such analyses could be used in work space design and in fall-prevention instructional materials, for both the home and work place. Young healthy performance represents “exemplar” performance and can also be used as a reference against which to compare the performance of aging and other clinical populations at risk for falling.

References

References
1.
Woollacott
,
M. H.
,
2000
, “
Systems Contributing to Balance Disorders in Older Adults
,”
J. Gerontol., Ser. A
,
55
(
8
), pp.
M424
M428
.
2.
Woollacott
,
M. H.
, and
Shumway-Cook
,
A.
,
1990
, “
Changes in Posture Control Across the Life Span—A Systems Approach
,”
Phys. Ther.
,
70
(
12
), pp.
799
807
.
3.
Jorgensen
,
L.
,
Engstad
,
T.
, and
Jacobsen
,
B. K.
,
2002
, “
Higher Incidence of Falls in Long-Term Stroke Survivors Than in Population Controls: Depressive Symptoms Predict Falls After Stroke
,”
Stroke
,
33
(
2
), pp.
542
547
.
4.
Berg
,
K.
,
Wood-Dauphinee
,
S.
,
Williams
,
J. I.
, and
Gayton
,
D.
,
1989
, “
Measuring Balance in the Elderly: Preliminary Development of an Instrument
,”
Physiother. Can.
,
41
(
6
), pp.
304
311
.
5.
Podsiadlo
,
D.
, and
Richardson
,
S.
,
1991
, “
The Timed Up & Go: A Test of Basic Functional Mobility for Frail Elderly Persons
,”
J. Am. Geriatr. Soc.
,
39
(
2
), pp.
142
148
.
6.
Fregly
,
A. R.
, and
Graybiel
,
A.
,
1968
, “
An Ataxia Test Battery Not Requiring Rails
,”
Aerosp. Med.
,
39
(
3
), pp.
277
282
.
7.
Tyson
,
S.
, and
Connell
,
L.
,
2009
, “
How to Measure Balance in Clinical Practice—A Systematic Review of the Psychometrics and Clinical Utility of Measures of Balance Activity for Neurological Conditions
,”
Clin. Rehabil.
,
23
(
9
), pp.
824
840
.
8.
Hyndman
,
D.
,
Ashburn
,
A.
, and
Stack
,
E.
,
2002
, “
Fall Events Among People With Stroke Living in the Community: Circumstances of Falls and Characteristics of Fallers
,”
Arch. Phys. Med. Rehabil.
,
83
(
2
), pp.
165
170
.
9.
Hyndman
,
D.
, and
Ashburn
,
A.
,
2003
, “
People With Stroke Living in the Community: Attention Deficits, Balance, ADL Ability and Falls
,”
Disability Rehabil.
,
25
(
15
), pp.
817
822
.
10.
Harris
,
J. E.
,
Eng
,
J. J.
,
Marigold
,
D. S.
,
Tokuno
,
C. D.
, and
Louis
,
C. L.
,
2005
, “
Relationship of Balance and Mobility to Fall Incidence in People With Chronic Stroke
,”
Phys. Ther.
,
85
(
2
), pp.
150
158
.
11.
Belgen
,
B.
,
Beninato
,
M.
,
Sullivan
,
P. E.
, and
Narielwalla
,
K.
,
2006
, “
The Association of Balance Capacity and Falls Self-Efficacy With History of Falling in Community-Dwelling People With Chronic Stroke
,”
Arch. Phys. Med. Rehabil.
,
87
(
4
), pp.
554
561
.
12.
Oliver
,
D.
,
Daly
,
F.
,
Martin
,
F. C.
, and
McMurdo
,
M. E. T.
,
2004
, “
Risk Factors and Risk Assessment Tools for Falls in Hospitalised Patients: A Systematic Review
,”
Age Ageing
,
33
(
2
), pp.
122
130
.
13.
Sibley
,
K. M.
,
Straus
,
S. E.
,
Inness
,
E. L.
,
Salbach
,
N. M.
, and
Jaglal
,
S. B.
,
2013
, “
Clinical Balance Assessment: Perceptions of Commonly-Used Standardized Measures and Current Practices Among Physiotherapists in Ontario, Canada
,”
Implementation Sci.
,
8
(
33
), pp.
1
8
.
14.
McGlynn
,
M.
, and
Cott
,
C. A.
,
2007
, “
Weighing the Evidence: Clinical Decision Making in Neurological Physical Therapy
,”
Physiother. Can.
,
59
(
4
), pp.
241
254
.
15.
McGinnis
,
P. Q.
,
Hack
,
L. M.
,
Nixon-Cave
,
K.
, and
Michlovitz
,
S. L.
,
2009
, “
Factors That Influence the Clinical Decision Making of Physical Therapists in Choosing a Balance Assessment Approach
,”
Phys. Ther.
,
89
(
3
), pp.
233
247
.
16.
Lord
,
S. R.
,
Menz
,
H. B.
, and
Tiedemann
,
A.
,
2003
, “
A Physiological Profile Approach to Falls Risk Assessment and Prevention
,”
Phys. Ther.
,
83
(
3
), pp.
237
252
.
17.
Hilliard
,
M. J.
,
Martinez
,
K. M.
,
Janssen
,
I.
,
Edwards
,
B.
,
Mille
,
M.-L.
,
Zhang
,
Y.
, and
Rogers
,
M. W.
,
2008
, “
Lateral Balance Factors Predict Future Falls in Community-Living Older Adults
,”
Arch. Phys. Med. Rehabil.
,
89
(
9
), pp.
1708
1713
.
18.
Horak
,
F. B.
,
Wrisley
,
D. M.
, and
Frank
,
J.
,
2009
, “
The Balance Evaluation Systems Test (BESTest) to Differentiate Balance Deficits
,”
Phys. Ther.
,
89
(
5
), pp.
484
498
.
19.
Paterka
,
R. J.
,
2002
, “
Sensorimotor Integration in Human Postural Control
,”
J. Neurophysiol.
,
88
(
3
), pp.
1097
1118
.
20.
Mergner
,
T.
,
2007
, “
Modeling Sensorimotor Control of Human Upright Stance
,”
Prog. Brain Res.
,
165
, pp.
283
297
.
21.
Barin
,
K.
,
1989
, “
Evaluation of a Generalized Model of Human Postural Dynamics and Control in the Sagittal Plane
,”
Biol. Cybern.
,
61
(
1
), pp.
37
50
.
22.
Kuo
,
A. D.
,
2005
, “
An Optimal State Estimation Model of Sensory Integration in Human Postural Balance
,”
J. Neural Eng.
,
2
(
3
), pp.
S235
S249
.
23.
Barton
,
J. E.
,
Roy
,
A.
,
Sorkin
,
J. D.
,
Rogers
,
M. W.
, and
Macko
,
R.
,
2015
, “
An Engineering Model of Human Balance Control Part 1: Biomechanical Model
,”
ASME J. Biomech. Eng.
,
138
(
1
), p.
014502
.
24.
Kiemel
,
T.
,
Oie
,
K. S.
, and
Jeka
,
J. J.
,
2006
, “
The Slow Dynamics of Postural Sway Are in the Feedback Loop
,”
J. Neurophysiol.
,
95
(
3
), pp.
1410
1418
.
25.
Jagacinski
,
R. J.
, and
Flach
,
J. M.
,
2003
,
Control Theory in Humans: Quantitative Approaches to Modeling Performance
,
Lawrence Erlbaum Associates
,
Mahwah, NJ
.
26.
Zatsiorsky
,
V. M.
,
Seluyanov
,
V. N.
, and
Chugunova
,
L. G.
,
1990
, “
Methods of Determining Mass-Inertial Characteristics of Human Body Segments
,”
Contemporary Problems of Biomechanics
,
G. G.
Chernyi
, and
S. A.
Regirer
, eds.,
Mir Publishers
,
Moscow, Russia
, pp.
272
291
.
27.
de Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky–Seluyuanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.
28.
Horstmann
,
G. A.
, and
Dietz
,
V.
,
1990
, “
A Basic Posture Control Mechanism: The Stabilization of the Centre of Gravity
,”
Electroencephalogr. Clin. Neurophysiol.
,
76
(
2
), pp.
165
176
.
29.
Patla
,
A.
,
Frank
,
J.
, and
Winter
,
D. A.
,
1990
, “
Assessment of Balance Control in the Elderly
,”
Physiother. Can.
,
42
(
2
), pp.
89
97
.
30.
Ferreira
,
P. J. S. G.
,
1996
, “
Interpolation in the Time and Frequency Domains
,”
IEEE Signal Process. Lett.
,
3
(
6
), pp.
176
178
.
31.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
Prentice Hall
,
Upper Saddle River, NJ
.
32.
Spiegel
,
M. R.
,
Schiller
,
J.
, and
Srinivasan
,
A. A.
,
2000
,
Probability and Statistics
,
McGraw-Hill
,
New York
.
33.
Gorman
,
J.
,
2013
, “
Scientists Unlock Mystery in Evolution of Pitchers
,”
New York Times
, p.
A3
.
34.
Roach
,
N. T.
,
Venkadesan
,
M.
,
Rainbow
,
M. J.
, and
Lieberman
,
D. E.
,
2013
, “
Elastic Energy Storage in the Shoulder and the Evolution of High-Speed Throwing in Homo
,”
Nature
,
498
(
7455
), pp.
483
487
.
35.
Roach
,
N. T.
, and
Lieberman
,
D. E.
,
2014
, “
Upper Body Contributions to Power Generation During Rapid, Overhand Throwing in Humans
,”
J. Exp. Biol.
,
217
(
12
), pp.
2139
2149
.
36.
McRuer
,
D.
,
Graham
,
D.
,
Krendel
,
E.
, and
William
,
R.
,
1965
, “
Human Pilot Dynamics in Compensatory Systems
,” Wright Patterson Air Force Base, OH,
Report No. AFFDL-TR-65-15
.
37.
Kleinman
,
D. L.
,
Baron
,
S.
, and
Levison
,
W. H.
,
1970
, “
An Optimal Control Model of Human Response—Part I: Theory and Validaton
,”
Automatica
,
6
(
3
), pp.
357
369
.
38.
Baron
,
S.
,
Kleinman
,
D. L.
, and
Levison
,
W. H.
,
1970
, “
An Optimal Control Model of Human Response—Part II: Prediction of Human Performance in a Complex Task
,”
Automatica
,
6
(
3
), pp.
371
383
.
39.
Boer
,
E. R.
, and
Kenyon
,
R. V.
,
1998
, “
Estimation of Time-Varying Delay Time in Nonstationary Linear Systems: An Approach to Monitor Human Operator Adaptation in Manual Tracking Tasks
,”
IEEE Trans. Syst., Man, Cybern.—Part A: Syst. Hum.
,
28
(
1
), pp.
89
99
.
40.
Vercher
,
J.-L.
,
Sares
,
F.
,
Blounin
,
J.
,
Bourdin
,
C.
, and
Gauthier
,
G.
,
2003
, “
Role of Sensory Information in Updating Internal Models of the Effector During Arm Tracking
,”
Prog. Brain Res.
,
142
, pp.
203
222
.
41.
Shadmehr
,
R.
, and
Wise
,
S. P.
,
2005
,
A Computational Neurobiology of Reaching and Pointing
,
MIT Press
,
Cambridge, MA
.
42.
Kawato
,
M.
, and
Wolpert
,
D. M.
,
1998
, “
Internal Models for Motor Control
,”
Novartis Found. Symp.
,
218
, pp.
291
307
.
43.
Abe
,
N.
, and
Yamanaka
,
K.
,
2003
, “
Smith Predictor Control and Internal Model Control—A Tutorial
,”
SICE
2003 Annual Conference
, Aug. 4–6, pp.
1383
1387
.
44.
Kowato
,
M.
,
1999
, “
Internal Models for Motor Control and Trajectory Planning
,”
Curr. Opin. Neurobiol.
,
9
(
6
), pp.
718
727
.
You do not currently have access to this content.