Prosthetic components' mismatch and subscapularis (SC) tear are determining factors for glenoid failure complication in nonconforming total shoulder arthroplasty (NC-TSA). Risk factors are linked to glenoid prosthetic loading. However, the mechanisms underlying the clinical observations remain unclear. This study assessed the combined impact of mismatch and subscapularis tear on glenoid loading. It was assumed that adequate glenoid loading was associated with minimal, but non-null, humeral head translations and contact pressure, as well as with maximal glenoid contact area, and that the center of pressure (COP) on the glenoid would have a centered displacement pattern. A numerical model was used to achieve two objectives. The first was to verify whether an optimum mismatch existed, for which failure risk would be minimal. The second was to explore the effect of subscapularis tear on the position of applied forces on the glenoid. A shoulder AnyBody musculoskeletal model was adapted to the arthroplasty context by introducing humeral head translations and contact between implants. Ten simulations were computed to compare combinations of varying mismatches (1.4 mm, 3.4 mm, 6.4 mm, 8.6 mm, and 9 mm) with two shoulder conditions (intact-muscle or subscapularis tear). Humeral head translations, center-of-pressure, contact area, contact pressure, and glenohumeral joint contact forces were numerically estimated. Mismatches between 3.4 mm and 6.4 mm were associated with the most minimal humeral translations and contact pressure, as well as with maximal contact area. Center of pressure displacement pattern differed according to shoulder condition, with an outward anterior tendency in presence of tear.

References

References
1.
Bohsali
,
K. I.
,
2006
, “
Complications of Total Shoulder Arthroplasty
,”
J. Bone Jt. Surg. Am.
,
88
(
10
), pp.
2279
2292
.
2.
Strauss
,
E. J.
,
Roche
,
C.
,
Flurin
,
P.-H.
,
Wright
,
T.
, and
Zuckerman
,
J. D.
,
2009
, “
The Glenoid in Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
18
(
5
), pp.
819
833
.
3.
Franklin
,
J. L.
,
Barrett
,
W. P.
,
Jackins
,
S. E.
, and
Matsen
,
F. A.
, III
,
1988
, “
Glenoid Loosening in Total Shoulder Arthroplasty. Association With Rotator Cuff Deficiency
,”
J. Arthroplasty
,
3
(
1
), pp.
39
46
.
4.
Matsen
,
F. A.
, III
,
Clinton
,
J.
,
Lynch
,
T. L.
,
Bertelsen
,
A.
, and
Richardson
,
M. L.
,
2008
, “
Glenoid Component Failure in Total Shoulder Arthroplasty
,”
J. Bone Jt. Surg. Am.
,
90
(
4
), pp.
885
896
.
5.
Sperling
,
J. W.
,
Hawkins
,
R. J.
,
Walch
,
G.
, and
Zuckerman
,
J. D.
,
2013
, “
Complications in Total Shoulder Arthroplasty
,”
J. Bone Jt. Surg. Am.
,
95
(
6
), pp.
563
569
.
6.
Severt
,
R.
,
Thomas
,
B. J.
,
Tsenter
,
M. J.
,
Amstutz
,
H. C.
, and
Kabo
,
J. M.
,
1993
, “
The Influence of Conformity and Constraint on Translational Forces and Frictional Torque in Total Shoulder Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
292
, pp.
151
158
.
7.
Karduna
,
A. R.
,
Williams
,
G. R. J.
,
Williams
,
J. L.
, and
Iannotti
,
J. P.
,
1997
, “
Glenohumeral Joint Translations Before and After Total Shoulder Arthroplasty. A Study in Cadavera
,”
J. Bone Jt. Surg. Am.
,
79
(
8
), pp.
1166
1174
.
8.
Karduna
,
A. R.
,
Williams
,
G. R. J.
,
Williams
,
J. L.
, and
Iannotti
,
J. P.
,
1997
, “
Joint Stability After Total Shoulder Arthroplasty in a Cadaver Model
,”
J. Shoulder Elbow Surg.
,
6
(
6
), pp.
506
511
.
9.
Sins
,
L.
,
Tétreault
,
P.
,
Petit
,
Y.
,
Nuño
,
N.
,
Billuart
,
F.
, and
Hagemeister
,
N.
,
2012
, “
Effect of Glenoid Implant Design on Glenohumeral Stability: An Experimental Study
,”
Clin. Biomech.
,
27
(
8
), pp.
782
788
.
10.
Walch
,
G.
,
Edwards
,
T. B.
,
Boulahia
,
A.
,
Boileau
,
P.
,
Mole
,
D.
, and
Adeleine
,
P.
,
2002
, “
The Influence of Glenohumeral Prosthetic Mismatch on Glenoid Radiolucent Lines: Results of a Multicenter Study
,”
J. Bone Jt. Surg. Am.
,
84
(
12
), pp.
2186
2191
.
11.
Gleyze
,
P.
,
Katz
,
D.
,
Valenti
,
P.
,
Sauzières
,
P.
,
Elkhoti
,
K.
, and
Kany
,
J.
,
2013
, “
Analyse des incidences de la différence de rayon de courbure entre tête humérale et glène dans les prothèses totales anatomiques—À propos de 107 cas
,”
Rev. Chir. Orthopedique Traumatologique
,
99
(
7S
), p.
S364
.
12.
Miller
,
S. L.
,
Hazrati
,
Y.
,
Klepps
,
S.
,
Chiang
,
A.
, and
Flatow
,
E. L.
,
2003
, “
Loss of Subscapularis Function After Total Shoulder Replacement: A Seldom Recognized Problem
,”
J. Shoulder Elbow Surg.
,
12
(
1
), pp.
29
34
.
13.
Blalock
,
R.
, and
Galatz
,
L. M.
,
2012
, “
Rotator Cuff Tears After Arthroplasty
,”
Semin. Arthroplasty
,
23
(
2
), pp.
114
117
.
14.
Favre
,
P.
,
Snedeker
,
J. G.
, and
Gerber
,
C.
,
2009
, “
Numerical Modelling of the Shoulder for Clinical Applications
,”
Philos. Trans. A Math. Phys. Eng. Sci.
,
367
(
1895
), pp.
2095
2118
.
15.
Patel
,
R. J.
,
Choi
,
D. S.
,
Wright
,
T.
, and
Gao
,
Y.
,
2014
, “
Nonconforming Glenoid Increases Posterior Glenohumeral Translation After a Total Shoulder Replacement
,”
J. Shoulder Elbow Surg.
,
23
(
12
), pp.
1831
1837
.
16.
Terrier
,
A.
,
Larrea
,
X.
,
Camine
,
V. M.
,
Pioletti
,
D.
, and
Farron
,
A.
,
2013
, “
Importance of the Subscapularis Muscle After Total Shoulder Arthroplasty
,”
Clin. Biomech.
,
28
(
2
), pp.
146
150
.
17.
Pandy
,
M. G.
,
2001
, “
Computer Modeling and Simulation of Human Movement
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
245
273
.
18.
Sins
,
L.
,
Lemieux
,
P.-O.
,
Tétreault
,
P.
,
Nuño
,
N.
,
Billuart
,
F.
, and
Hagemeister
,
N.
,
2012
, “
A Numerical Model of Total Shoulder Arthroplasty for Implant Reaction Forces Estimation
,” 9th Conference of the International Shoulder Group (
ISG
), Wales, UK, Aug. 22–24.
19.
Sins
,
L.
,
Tétreault
,
P.
,
Nuño
,
N.
, and
Hagemeister
,
N.
, “
A Musculoskeletal Shoulder Model Using Force Dependent Kinematics to Evaluate Non-Conforming Total Shoulder Arthroplasty
,”
AnyBody Webcast
(published online).
20.
Sins
,
L.
,
Tétreault
,
P.
,
Hagemeister
,
N.
, and
Nuño
,
N.
,
2015
, “
Adaptation of the AnyBody™ Musculoskeletal Shoulder Model to the Nonconforming Total Shoulder Arthroplasty Context
,”
ASME J. Biomech. Eng.
,
137
(
10
), p.
101006
.
21.
van der Helm
,
F. C. T.
,
Veeger
,
D. H. E. J.
,
Pronk
,
G. M.
,
Van der Woude
,
L. H.
, and
Rozendal
,
R. H.
,
1992
, “
Geometry Parameters for Musculoskeletal Modelling of the Shoulder System
,”
J. Biomech.
,
25
(
2
), pp.
129
144
.
22.
Veeger
,
D. H. E. J.
,
van der Helm
,
F. C. T.
,
Van der Woude
,
L. H.
,
Pronk
,
G. M.
, and
Rozendal
,
R. H.
,
1991
, “
Inertia and Muscle Contraction Parameters for Musculoskeletal Modelling of the Shoulder Mechanism
,”
J. Biomech.
,
24
(
7
), pp.
615
629
.
23.
Gupta
,
S.
, and
van der Helm
,
F. C. T.
,
2004
, “
Load Transfer Across the Scapula During Humeral Abduction
,”
J. Biomech.
,
37
(
7
), pp.
1001
1009
.
24.
Rasmussen
,
J.
,
2007
, “
Validation of the AnyBody Version of the Dutch Shoulder Model
,” http://www.anybodytech.com/199.0.html
25.
Charlton
,
I. W.
, and
Johnson
,
G. R.
,
2006
, “
A Model for the Prediction of the Forces at the Glenohumeral Joint
,”
Proc. Inst. Mech. Eng., Part H
,
220
(
8
), pp.
801
812
.
26.
Karlsson
,
D.
, and
Peterson
,
B.
,
1992
, “
Towards a Model for Force Predictions in the Human Shoulder
,”
J. Biomech.
,
25
(
2
), pp.
189
199
.
27.
Masjedi
,
M.
,
Lovell
,
C.
, and
Johnson
,
G. R.
,
2011
, “
Comparison of Range of Motion and Function of Subjects With Reverse Anatomy Bayley-Walker Shoulder Replacement With Those of Normal Subjects
,”
Hum. Mov. Sci.
,
30
(
6
), pp.
1062
1071
.
28.
Nikooyan
,
A. A.
,
Veeger
,
D. H. E. J.
,
Chadwick
,
E. K. J.
,
Praagman
,
M.
, and
van der Helm
,
F. C. T.
,
2011
, “
Development of a Comprehensive Musculoskeletal Model of the Shoulder and Elbow
,”
Med. Biol. Eng. Comput.
,
49
(
12
), pp.
1425
1435
.
29.
Quental
,
C.
,
Folgado
,
J.
,
Ambrósio
,
J.
, and
Monteiro
,
J.
,
2012
, “
A Multibody Biomechanical Model of the Upper Limb Including the Shoulder Girdle
,”
Multibody Syst. Dyn.
,
28
(
1–2
), pp.
83
108
.
30.
Bei
,
Y.
, and
Fregly
,
B. J.
,
2004
, “
Multibody Dynamic Simulation of Knee Contact Mechanics
,”
Med. Eng. Phys.
,
26
(
9
), pp.
777
789
.
31.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
32.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Modell. Pract. Theory
,
14
(
8
), pp.
1100
1111
.
33.
Wu
,
G.
,
van der Helm
,
F. C. T.
,
Veeger
,
D. H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.
34.
de Groot
,
J. H.
, and
Brand
,
R.
,
2001
, “
A Three-Dimensional Regression Model of the Shoulder Rhythm
,”
Clin. Biomech.
,
16
(
9
), pp.
735
743
.
35.
Bey
,
M. J.
,
Kline
,
S. K.
,
Zauel
,
R.
,
Lock
,
T. R.
, and
Kolowich
,
P. A.
,
2008
, “
Measuring Dynamic In-Vivo Glenohumeral Joint Kinematics: Technique and Preliminary Results
,”
J. Biomech.
,
41
(
3
), pp.
711
714
.
36.
Graichen
,
H.
,
Hinterwimmer
,
S.
,
von Eisenhart-Rothe
,
R.
,
Vogl
,
T.
,
Englmeier
,
K.-H.
, and
Eckstein
,
F.
,
2005
, “
Effect of Abducting and Adducting Muscle Activity on Glenohumeral Translation, Scapular Kinematics and Subacromial Space Width in vivo
,”
J. Biomech.
,
38
(
4
), pp.
755
760
.
37.
Braman
,
J. P.
,
Falicov
,
A.
,
Boorman
,
R.
, and
Matsen
,
F. A.
, III
,
2006
, “
Alterations in Surface Geometry in Retrieved Polyethylene Glenoid Component
,”
J. Orthop. Res.
,
24
(
6
), pp.
1249
1260
.
38.
Hopkins
,
A. R.
,
Hansen
,
U.
,
Amis
,
A.
,
Knight
,
L.
,
Taylor
,
M.
,
Levy
,
O.
, and
Copeland
,
S. A.
,
2007
, “
Wear in the Prosthetic Shoulder: Association With Design Parameters
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
223
230
.
39.
Hertel
,
R.
, and
Ballmer
,
F. T.
,
2003
, “
Observations on Retrieved Glenoid Components
,”
J. Arthroplasty
,
18
(
3
), pp.
361
366
.
40.
Nho
,
S. J.
,
Ala
,
O. L.
,
Dodson
,
C. C.
,
Figgie
,
M. P.
,
Wright
,
T. M.
,
Craig
,
E. V.
, and
Warren
,
R. F.
,
2008
, “
Comparison of Conforming and Nonconforming Retrieved Glenoid Components
,”
J. Shoulder Elbow Surg.
,
17
(
6
), pp.
914
920
.
41.
Utz
,
C. J.
,
Bauer
,
T. W.
, and
Iannotti
,
J. P.
,
2011
, “
Glenoid Component Loosening Due to Deficient Subscapularis: A Case Study of Eccentric Loading
,”
J. Shoulder Elbow Surg.
,
20
(
8
), pp.
e16
21
.
42.
Hammond
,
G.
,
Tibone
,
J. E.
,
McGarry
,
M. H.
,
Jun
,
B. J.
, and
Lee
,
T. Q.
,
2012
, “
Biomechanical Comparison of Anatomic Humeral Head Resurfacing and Hemiarthroplasty in Functional Glenohumeral Positions
,”
J. Bone Jt. Surg. Am.
,
94
(
1
), pp.
68
76
.
43.
Soslowsky
,
L. J.
,
Flatow
,
E. L.
,
Bigras
,
P.
,
Pawluk
,
R. J.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
1992
, “
Quantitation of In Situ Contact Areas at the Glenohumeral Joint: A Biomechanical Study
,”
J. Orthop. Res.
,
10
(
4
), pp.
524
534
.
44.
Terrier
,
A.
,
Büchler
,
P.
, and
Farron
,
A.
,
2006
, “
Influence of Glenohumeral Conformity on Glenoid Stresses After Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
15
(
4
), pp.
515
520
.
45.
Bergmann
,
G.
,
Graichen
,
F.
,
Kääb
,
M.
,
Westerhoff
,
P.
,
Beier
,
A.
,
Bender
,
A.
, and
Rohlmann
,
A.
,
2007
, “
in vivo Glenohumeral Contact Forces—Measurements in the First Patient 7 Months Postoperatively
,”
J. Biomech.
,
40
(
10
), pp.
2139
2149
.
46.
Inman
,
V. T.
,
Saunders
,
J. B.
, and
Abbott
,
L. C.
,
1944
, “
Observations of the Function of the Shoulder Joint
,”
J. Bone Joint Surg. Am.
,
26
(
1
), pp.
1
30
.
47.
van der Helm
,
F. C. T.
,
1994
, “
Analysis of the Kinematic and Dynamic Behavior of the Shoulder Mechanism
,”
J. Biomech.
,
27
(
5
), pp.
527
550
.
48.
Lund
,
M. E.
,
de Zee
,
M.
,
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2012
, “
On Validation of Multibody Musculoskeletal Models
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
2
), pp.
82
94
.
You do not currently have access to this content.