The mucociliary clearance in the bronchial tree is the main mechanism by which the lungs clear themselves of deposited particulate matter. In this work, a macroscopic model of the clearance mechanism is proposed. Lubrication theory is applied for thin films with both surface tension effects and a moving wall boundary. The flow field is computed by the use of a finite-volume scheme on an unstructured grid that replicates a bronchial bifurcation. The carina in bronchial bifurcations is of special interest because it is a location of increased deposition of inhaled particles. In this study, the mucus flow is computed for different values of the surface tension. It is found that a minimal surface tension is necessary for efficiently removing the mucus while maintaining the mucus film thickness at physiological levels.
Skip Nav Destination
Article navigation
December 2016
Research-Article
A Macroscopic Model for Simulating the Mucociliary Clearance in a Bronchial Bifurcation: The Role of Surface Tension
Michail Manolidis,
Michail Manolidis
Department of Biomedical Engineering,
University of Michigan,
Ann Arbor, MI 48109;
University of Michigan,
Ann Arbor, MI 48109;
Laboratoire de Physique de la Matière Condensée,
Ecole Polytechnique, CNRS,
Université Paris-Saclay,
Palaiseau Cedex 91128, France
e-mail: mihalis@umich.edu
Ecole Polytechnique, CNRS,
Université Paris-Saclay,
Palaiseau Cedex 91128, France
e-mail: mihalis@umich.edu
Search for other works by this author on:
Daniel Isabey,
Daniel Isabey
Professor
Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-mail: daniel.isabey@inserm.fr
Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-mail: daniel.isabey@inserm.fr
Search for other works by this author on:
Bruno Louis,
Bruno Louis
Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-mail: bruno.louis@inserm.fr
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-mail: bruno.louis@inserm.fr
Search for other works by this author on:
James B. Grotberg,
James B. Grotberg
Professor
Department of Biomedical Engineering,
University of Michigan,
Ann Arbor, MI 48109
e-mail: grotberg@umich.edu
Department of Biomedical Engineering,
University of Michigan,
Ann Arbor, MI 48109
e-mail: grotberg@umich.edu
Search for other works by this author on:
Marcel Filoche
Marcel Filoche
Professor
Laboratoire de Physique de la Matière Condensée,
Ecole Polytechnique, CNRS,
Université Paris-Saclay,
Palaiseau Cedex 91128, France;
Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-ail: marcel.filoche@polytechnique.edu
Laboratoire de Physique de la Matière Condensée,
Ecole Polytechnique, CNRS,
Université Paris-Saclay,
Palaiseau Cedex 91128, France;
Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-ail: marcel.filoche@polytechnique.edu
Search for other works by this author on:
Michail Manolidis
Department of Biomedical Engineering,
University of Michigan,
Ann Arbor, MI 48109;
University of Michigan,
Ann Arbor, MI 48109;
Laboratoire de Physique de la Matière Condensée,
Ecole Polytechnique, CNRS,
Université Paris-Saclay,
Palaiseau Cedex 91128, France
e-mail: mihalis@umich.edu
Ecole Polytechnique, CNRS,
Université Paris-Saclay,
Palaiseau Cedex 91128, France
e-mail: mihalis@umich.edu
Daniel Isabey
Professor
Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-mail: daniel.isabey@inserm.fr
Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-mail: daniel.isabey@inserm.fr
Bruno Louis
Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-mail: bruno.louis@inserm.fr
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-mail: bruno.louis@inserm.fr
James B. Grotberg
Professor
Department of Biomedical Engineering,
University of Michigan,
Ann Arbor, MI 48109
e-mail: grotberg@umich.edu
Department of Biomedical Engineering,
University of Michigan,
Ann Arbor, MI 48109
e-mail: grotberg@umich.edu
Marcel Filoche
Professor
Laboratoire de Physique de la Matière Condensée,
Ecole Polytechnique, CNRS,
Université Paris-Saclay,
Palaiseau Cedex 91128, France;
Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-ail: marcel.filoche@polytechnique.edu
Laboratoire de Physique de la Matière Condensée,
Ecole Polytechnique, CNRS,
Université Paris-Saclay,
Palaiseau Cedex 91128, France;
Inserm, U955 (Equipe13) and CNRS ERL 7240,
Cell and Respiratory Biomechanics,
Université Paris Est,
Créteil 94010, France
e-ail: marcel.filoche@polytechnique.edu
1Corresponding author.
Manuscript received December 18, 2015; final manuscript received August 9, 2016; published online November 3, 2016. Assoc. Editor: Naomi Chesler.
J Biomech Eng. Dec 2016, 138(12): 121005 (8 pages)
Published Online: November 3, 2016
Article history
Received:
December 18, 2015
Revised:
August 9, 2016
Citation
Manolidis, M., Isabey, D., Louis, B., Grotberg, J. B., and Filoche, M. (November 3, 2016). "A Macroscopic Model for Simulating the Mucociliary Clearance in a Bronchial Bifurcation: The Role of Surface Tension." ASME. J Biomech Eng. December 2016; 138(12): 121005. https://doi.org/10.1115/1.4034507
Download citation file:
Get Email Alerts
Cited By
Related Articles
Mathematical Modeling of Mammary Ducts in Lactating Human Females
J Biomech Eng (July,2015)
Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification
J Biomech Eng (July,2018)
Special Issue: Annual Education Issue Writing a Review Article for Publication as Part of a Graduate Engineering Course
J Biomech Eng (August,2018)
A Robust and Subject-Specific Hemodynamic Model of the Lower Limb Based on Noninvasive Arterial Measurements
J Biomech Eng (January,2017)
Related Proceedings Papers
Related Chapters
Two Advanced Methods
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Introduction
Mechanical Blood Trauma in Circulatory-Assist Devices
Aerodynamic Performance Analysis
Axial-Flow Compressors