Cardiac hemodynamics can be computed from medical imaging data, and results could potentially aid in cardiac diagnosis and treatment optimization. However, simulations are often based on simplified geometries, ignoring features such as papillary muscles and trabeculae due to their complex shape, limitations in image acquisitions, and challenges in computational modeling. This severely hampers the use of computational fluid dynamics in clinical practice. The overall aim of this study was to develop a novel numerical framework that incorporated these geometrical features. The model included the left atrium, ventricle, ascending aorta, and heart valves. The framework used image registration to obtain patient-specific wall motion, automatic remeshing to handle topological changes due to the complex trabeculae motion, and a fast interpolation routine to obtain intermediate meshes during the simulations. Velocity fields and residence time were evaluated, and they indicated that papillary muscles and trabeculae strongly interacted with the blood, which could not be observed in a simplified model. The framework resulted in a model with outstanding geometrical detail, demonstrating the feasibility as well as the importance of a framework that is capable of simulating blood flow in physiologically realistic hearts.

References

References
1.
Boyd
,
M. T.
,
Seward
,
J. B.
,
Tajik
,
A. J.
, and
Edwards
,
W. D.
,
1987
, “
Frequency and Location of Prominent Left Ventricular Trabeculations at Autopsy in 474 Normal Human Hearts: Implications for Evaluation of Mural Thrombi by Two-Dimensional Echocardiography
,”
J. Am. Coll. Cardiol.
,
9
(
2
), pp.
323
326
.
2.
Vedula
,
V.
,
Seo
,
J.-H.
,
Lardo
,
A. C.
, and
Mittal
,
R.
,
2015
, “
Effect of Trabeculae and Papillary Muscles on the Hemodynamics of the Left Ventricle
,”
Theor. Comput. Fluid Dyn.
,
30
(
1–2
), pp.
3
21
.
3.
Bolger
,
A. F.
,
Heiberg
,
E.
,
Karlsson
,
M.
,
Wigström
,
L.
,
Engvall
,
J.
,
Sigfridsson
,
A.
,
Ebbers
,
T.
,
Kvitting
,
J.-P. E.
,
Carlhäll
,
C. J.
, and
Wranne
,
B.
,
2007
, “
Transit of Blood Flow Through the Human Left Ventricle Mapped by Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson.
,
9
(
5
), pp.
741
747
.
4.
Carlhäll
,
C. J.
, and
Bolger
,
A.
,
2010
, “
Passing Strange: Flow in the Failing Ventricle
,”
Circ.: Heart Failure
,
3
(
2
), pp.
326
331
.
5.
Eriksson
,
J.
,
Dyverfeldt
,
P.
,
Engvall
,
J.
,
Bolger
,
A. F.
,
Ebbers
,
T.
, and
Carlhäll
,
C. J.
,
2011
, “
Quantification of Presystolic Blood Flow Organization and Energetics in the Human Left Ventricle
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
300
(
6
), pp.
H2135
H2141
.
6.
Markl
,
M.
,
Kilner
,
P. J.
, and
Ebbers
,
T.
,
2011
, “
Comprehensive 4D Velocity Mapping of the Heart and Great Vessels by Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson.
,
13
(
1
), p.
7
.
7.
Thavendiranathan
,
P.
,
Liu
,
S.
,
Datta
,
S.
,
Walls
,
M.
,
Nitinunu
,
A.
,
Van Houten
,
T.
,
Tomson
,
N. A.
,
Vidmar
,
L.
,
Georgescu
,
B.
,
Wang
,
Y.
,
Srinivasan
,
S.
,
De Michelis
,
N.
,
Raman
,
S. V.
,
Ryan
,
T.
, and
Vannan
,
M. A.
,
2012
, “
Automated Quantification of Mitral Inflow and Aortic Outflow Stroke Volumes by Three-Dimensional Real-Time Volume Color-Flow Doppler Transthoracic Echocardiography: Comparison With Pulsed-Wave Doppler and Cardiac Magnetic Resonance Imaging
,”
J. Am. Soc. Echocardiography
,
25
(
1
), pp.
56
65
.
8.
Konstantopoulou
,
A.
,
Tsikrikas
,
S.
,
Asvestas
,
D.
,
Korantzopoulos
,
P.
, and
Letsas
,
K. P.
,
2013
, “
Coronary CT Angiography; Dose Reduction Strategies
,”
World J. Cardiol.
,
5
(
6
), pp.
175
185
.
9.
Long
,
Q.
,
Merrifield
,
R.
,
Xu
,
X.
,
Kilner
,
P.
,
Firmin
,
D.
, and
Yang
,
G.
,
2008
, “
Subject-Specific Computational Simulation of Left Ventricular Flow Based on Magnetic Resonance Imaging
,”
Proc. Inst. Mech. Eng., Part H
,
222
(
4
), pp.
475
485
.
10.
Mihalef
,
V.
,
Ionasec
,
R. I.
,
Sharma
,
P.
,
Georgescu
,
B.
,
Voigt
,
I.
,
Suehling
,
M.
, and
Comaniciu
,
D.
,
2011
, “
Patient-Specific Modelling of Whole Heart Anatomy, Dynamics and Haemodynamics From Four-Dimensional Cardiac CT Images
,”
Interface Focus
,
1
(
3
), pp.
286
296
.
11.
Domenichini
,
F.
,
Pedrizzetti
,
G.
, and
Baccani
,
B.
,
2005
, “
Three-Dimensional Filling Flow Into a Model Left Ventricle
,”
J. Fluid Mech.
,
539
, pp.
179
198
.
12.
Le
,
T. B.
, and
Sotiropoulos
,
F.
,
2012
, “
On the Three-Dimensional Vortical Structure of Early Diastolic Flow in a Patient-Specific Left Ventricle
,”
Eur. J. Mech. B/Fluids
,
35
, pp.
20
24
.
13.
Seo
,
J. H.
, and
Mittal
,
R.
,
2013
, “
Effect of Diastolic Flow Patterns on the Function of the Left Ventricle
,”
Phys. Fluids
,
25
(
11
), p.
110801
.
14.
Vedula
,
V.
,
George
,
R.
,
Younes
,
L.
, and
Mittal
,
R.
,
2015
, “
Hemodynamics in the Left Atrium and Its Effect on Ventricular Flow Patterns
,”
ASME J. Biomech. Eng.
,
137
(
11
), p.
111003
.
15.
Kulp
,
S.
,
Gao
,
M.
,
Zhang
,
S.
,
Qian
,
Z.
,
Voros
,
S.
,
Metaxas
,
D.
, and
Axel
,
L.
,
2011
, “
Using High Resolution Cardiac CT Data to Model and Visualize Patient-Specific Interactions Between Trabeculae and Blood Flow
,”
Medical Image Computing and Computer-Assisted Intervention
14th International Conference (
MICCAI 2011
), Toronto, Canada, Sept. 18–22, pp.
468
475
.
16.
Heiberg
,
E.
,
Sjogren
,
J.
,
Ugander
,
M.
,
Carlsson
,
M.
,
Engblom
,
H.
, and
Arheden
,
H.
,
2010
, “
Design and Validation of Segment–Freely Available Software for Cardiovascular Image Analysis
,”
BMC Med. Imaging
,
10
(
1
), p.
1
.
17.
Thirion
,
J.-P.
,
1998
, “
Image Matching as a Diffusion Process: An Analogy With Maxwell's Demons
,”
Med. Image Anal.
,
2
(
3
), pp.
243
260
.
18.
Vercauteren
,
T.
,
Pennec
,
X.
,
Perchant
,
A.
, and
Ayache
,
N.
,
2009
, “
Diffeomorphic Demons: Efficient Non-Parametric Image Registration
,”
NeuroImage
,
45
(
1
), pp.
S61
S72
.
19.
Charonko
,
J. J.
,
Kumar
,
R.
,
Stewart
,
K.
,
Little
,
W. C.
, and
Vlachos
,
P. P.
,
2013
, “
Vortices Formed on the Mitral Valve Tips Aid Normal Left Ventricular Filling
,”
Ann. Biomed. Eng.
,
41
(
5
), pp.
1049
1061
.
20.
Chnafa
,
C.
,
Mendez
,
S.
, and
Nicoud
,
F.
,
2014
, “
Image-Based Large-Eddy Simulation in a Realistic Left Heart
,”
Comput. Fluids
,
94
, pp.
173
187
.
21.
Lantz
,
J.
,
Dyverfeldt
,
P.
, and
Ebbers
,
T.
,
2014
, “
Improving Blood Flow Simulations by Incorporating Measured Subject-Specific Wall Motion
,”
Cardiovasc. Eng. Technol.
,
5
(
3
), pp.
261
269
.
22.
Mottram
,
P. M.
, and
Marwick
,
T. H.
,
2005
, “
Assessment of Diastolic Function: What the General Cardiologist Needs to Know
,”
Heart (British Cardiac Society)
,
91
(
5
), pp.
681
695
.
23.
Choi
,
Y. J.
,
Vedula
,
V.
, and
Mittal
,
R.
,
2014
, “
Computational Study of the Dynamics of a Bileaflet Mechanical Heart Valve in the Mitral Position
,”
Ann. Biomed. Eng.
,
42
(
8
), pp.
1668
1680
.
24.
Hunt
,
J. C.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Center for Turbulence Research, Stanford, CA,
Report No. CTR-S88
.
25.
Zajac
,
J.
,
Eriksson
,
J.
,
Dyverfeldt
,
P.
,
Bolger
,
A. F.
,
Ebbers
,
T.
, and
Carlhäll
,
C. J.
,
2014
, “
Turbulent Kinetic Energy in Normal and Myopathic Left Ventricles
,”
J. Magn. Reson. Imaging
,
41
(4), pp.
1021
1029
.
26.
Dahl
,
S. K.
,
Thomassen
,
E.
,
Hellevik
,
L. R.
, and
Skallerud
,
B.
,
2012
, “
Impact of Pulmonary Venous Locations on the Intra-Atrial Flow and the Mitral Valve Plane Velocity Profile
,”
Cardiovasc. Eng. Technol.
,
3
(
3
), pp.
269
281
.
You do not currently have access to this content.