Our research aims to design low-cost, high-performance, passive prosthetic knees for developing countries. In this study, we determine optimal stiffness, damping, and engagement parameters for a low-cost, passive prosthetic knee that consists of simple mechanical elements and may enable users to walk with the normative kinematics of able-bodied humans. Knee joint power was analyzed to divide gait into energy-based phases and select mechanical components for each phase. The behavior of each component was described with a polynomial function, and the coefficients and polynomial order of each function were optimized to reproduce the knee moments required for normative kinematics of able-bodied humans. Sensitivity of coefficients to prosthesis mass was also investigated. The knee moments required for prosthesis users to walk with able-bodied normative kinematics were accurately reproduced with a mechanical system consisting of a linear spring, two constant-friction dampers, and three clutches (R2=0.90 for a typical prosthetic leg). Alterations in upper leg, lower leg, and foot mass had a large influence on optimal coefficients, changing damping coefficients by up to 180%. Critical results are reported through parametric illustrations that can be used by designers of prostheses to select optimal components for a prosthetic knee based on the inertial properties of the amputee and his or her prosthetic leg.

References

References
1.
World Health Organization
,
2005
, “
Guidelines for Training Personnel in Developing Countries for Prosthetics and Orthotics Services
,” World Health Organization,
Technical Report No. 9241592672
.
2.
World Health Organization
,
2011
, “
World Report on Disability
,” World Health Organization,
Technical Report No. 9789241564182
.
3.
Hamner
,
S. R.
,
Narayan
, V
. G.
, and
Donaldson
,
K. M.
,
2013
, “
Designing for Scale: Development of the ReMotion Knee for Global Emerging Markets
,”
Ann. Biomed. Eng.
,
41
(
9
), pp.
1851
1859
.
4.
Narang
,
I.
, and
Jape
,
V.
,
1982
, “
Retrospective Study of 14,400 Civilian Disabled Treated Over 25 Years at an Artificial Limb Center
,”
Prosthet. Orthotics Int.
,
6
(
1
), pp.
10
16
.
5.
Central Intelligence Agency
,
2013
, “
The CIA World Factbook 2014
,” Central Intelligence Agency, Washington, DC,
Technical Report No. 9781626360730
.
6.
Mohan
,
D.
,
1986
, “
A Report on Amputees in India
,”
Orthotics Prosthet.
,
40
(
1
), pp.
16
32
.
7.
Jensen
,
J. S.
, and
Raab
,
W.
,
2004
, “
Clinical Field Testing of Transfemoral Prosthetic Technologies: Resin-Wood and ICRC-Polypropylene
,”
Prosthet. Orthotics Int.
,
28
(
2
), pp.
141
151
.
8.
Bhagwan Mahaveer Viklang Sahayata Samiti
,
2014
, “
What We Do: Above Knee Prosthesis
,” accessed May 19, 2014, http://jaipurfoot.org/what_we_do/prosthesis/above_knee_prosthesis.html
9.
Narang
,
Y. S.
,
2013
, “
Identification of Design Requirements for a High-Performance, Low-Cost, Passive Prosthetic Knee Through User Analysis and Dynamic Simulation
,”
Master's thesis
, Massachusetts Institute of Technology, Cambridge MA.
10.
Kuo
,
A. D.
, and
Donelan
,
J. M.
,
2010
, “
Dynamic Principles of Gait and Their Clinical Implications
,”
Phys. Ther.
,
90
(
2
), pp.
157
174
.
11.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Rob. Res.
,
27
(
2
), pp.
263
273
.
12.
Martinez-Villalpando
,
E. C.
, and
Herr
,
H.
,
2009
, “
Agonist–Antagonist Active Knee Prosthesis: A Preliminary Study in Level-Ground Walking
,”
J. Rehabil. Res. Dev.
,
46
(
3
), pp.
361
374
.
13.
Berry
,
D.
,
2006
, “
Microprocessor Prosthetic Knees
,”
Phys. Med. Rehabil. Clin. North Am.
,
17
(
1
), pp.
91
113
.
14.
Smith
,
D. G.
,
Michael
,
J. W.
, and
Bowker
,
J. H.
,
2004
,
Atlas of Amputations and Limb Deficiencies: Surgical, Prosthetic, and Rehabilitation Principles
, Vol.
3
,
American Academy of Orthopaedic Surgeons
,
Rosemont, IL
.
15.
Andrysek
,
J.
,
2010
, “
Lower-Limb Prosthetic Technologies in the Developing World: A Review of Literature From 1994–2010
,”
Prosthet. Orthotics Int.
,
34
(
4
), pp.
378
398
.
16.
Andrysek
,
J.
,
Klejman
,
S.
,
Torres-Moreno
,
R.
,
Heim
,
W.
,
Steinnagel
,
B.
, and
Glasford
,
S.
,
2011
, “
Mobility Function of a Prosthetic Knee Joint With an Automatic Stance Phase Lock
,”
Prosthet. Orthotics Int.
,
35
(
2
), pp.
163
170
.
17.
Frigo
,
C.
,
Crenna
,
P.
, and
Jensen
,
L.
,
1996
, “
Moment-Angle Relationship at Lower Limb Joints During Human Walking at Different Velocities
,”
J. Electromyogr. Kinesiology
,
6
(
3
), pp.
177
190
.
18.
Shamaei
,
K.
, and
Dollar
,
A. M.
,
2011
, “
On the Mechanics of the Knee During the Stance Phase of the Gait
,” 2011
IEEE
International Conference on Rehabilitation Robotics
, June 28–July 1.
19.
Shamaei
,
K.
,
Sawicki
,
G. S.
, and
Dollar
,
A. M.
,
2013
, “
Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking
,”
PLoS One
,
8
(
3
), p.
e59993
.
20.
Czerniecki
,
J. M.
,
Gitter
,
A.
, and
Weaver
,
K.
,
1994
, “
Effect of Alterations in Prosthetic Shank Mass on the Metabolic Costs of Ambulation in Above-Knee Amputees
,”
Am. J. Phys. Med. Rehabil.
,
73
(
5
), pp.
348
352
.
21.
Narang
,
Y.
,
Arelekatti
, V
. N. M.
, and
Winter
,
A.
,
2015
, “
The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-Bodied Kinematics
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
7
), pp.
754
763
.
22.
Winter
,
D. A.
,
1991
,
The Biomechanics and Motor Control of Human Gait: Normal, Elderly, and Pathological
,
2nd ed.
,
Waterloo Biomechanics
,
Waterloo, Canada
.
23.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
4th ed.
,
Wiley
,
Hoboken, NJ
.
24.
Hansen
,
A. H.
,
Childress
,
D. S.
, and
Knox
,
E. H.
,
2004
, “
Roll-Over Shapes of Human Locomotor Systems: Effects of Walking Speed
,”
Clin. Biomech.
,
19
(
4
), pp.
407
414
.
25.
Johansson
,
J. L.
,
Sherrill
,
D. M.
,
Riley
,
P. O.
,
Bonato
,
P.
, and
Herr
,
H.
,
2005
, “
A Clinical Comparison of Variable-Damping and Mechanically Passive Prosthetic Knee Devices
,”
Am. J. Phys. Med. Rehabil.
,
84
(
8
), pp.
563
575
.
26.
Winter
,
D. A.
,
1983
, “
Energy Generation and Absorption at the Ankle and Knee During Fast, Natural, and Slow Cadences
,”
Clin. Orthop. Relat. Res.
,
175
, pp.
147
154
.
27.
Gates
,
D. H.
,
2004
, “
Characterizing Ankle Function During Stair Ascent, Descent, and Level Walking for Ankle Prosthesis and Orthosis Design
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
28.
Winter
,
D. A.
,
1983
, “
Biomechanical Motor Patterns in Normal Walking
,”
J. Mot. Behav.
,
15
(
4
), pp.
302
330
.
29.
Shandiz
,
M. A.
,
Farahmand
,
F.
,
Osman
,
N. A. A.
, and
Zohoor
,
H.
,
2013
, “
A Robotic Model of Transfemoral Amputee Locomotion for Design Optimization of Knee Controllers
,”
Int. J. Adv. Rob. Syst.
,
10
(
1
), pp.
161
171
.
30.
Arelekatti
,
V. N. M.
, and
Winter
,
A. G.
,
2015
, “
Design of a Fully Passive Prosthetic Knee Mechanism for Transfemoral Amputees in India
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Singapore, Aug. 11–14, pp.
350
356
.
31.
Arelekatti
,
V. N. M.
, and
Winter
,
A. G.
,
2015
, “
Design of Mechanism and Preliminary Field Validation of Low-Cost, Passive Prosthetic Knee for Users With Transfemoral Amputation in India
,”
ASME
Paper No. DETC2015-47385.
32.
Michael
,
J.
,
1999
, “
Modern Prosthetic Knee Mechanisms
,”
Clin. Orthop. Relat. Res.
,
361
, pp.
39
47
.
33.
Drillis
,
R.
, and
Contini
,
R.
,
1966
, “
Body Segment Parameters
,” Office of Vocational Rehabilitation, Department of Health, Education, and Welfare, New York, Technical Report No. 331166-03.
34.
Miller
,
D. I.
, and
Nelson
,
R. C.
,
1973
,
The Biomechanics of Sport: A Research Approach
,
Lea & Febiger
,
Philadelphia, PA
.
35.
Plagenhoef
,
S.
,
1971
,
Patterns of Human Motion: A Cinematographic Analysis
,
Prentice Hall
,
Upper Saddle River, NJ
.
36.
Segal
,
A. D.
,
Orendurff
,
M. S.
,
Klute
,
G. K.
,
McDowell
,
M. L.
,
Pecoraro
,
J. A.
,
Shofer
,
J.
, and
Czerniecki
,
J. M.
,
2006
, “
Kinematic and Kinetic Comparisons of Transfemoral Amputee Gait Using C-Leg and Mauch SNS Prosthetic Knees
,”
J. Rehabil. Res. Dev.
,
43
(
7
), pp.
857
870
.
37.
Pandy
,
M. G.
,
2001
, “
Computer Modeling and Simulation of Human Movement
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
245
273
.
38.
Meglan
,
D. A.
,
1991
, “
Enhanced Analysis of Human Locomotion
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
39.
Au
,
S.
,
Berniker
,
M.
, and
Herr
,
H.
,
2008
, “
Powered Ankle-Foot Prosthesis to Assist Level-Ground and Stair-Descent Gaits
,”
Neural Networks
,
21
(
4
), pp.
654
666
.
40.
BiOM
,
2014
, “
Biom T2 System
,” accessed May 19, 2014, http://www.biom.com/patients/biom-t2-system/
41.
Hafner
,
B. J.
,
2005
, “
Clinical Prescription and Use of Prosthetic Foot and Ankle Mechanisms: A Review of the Literature
,”
JPO: J. Prosthet. Orthotics
,
17
(
4
), pp.
S5
S11
.
42.
Hafner
,
B. J.
,
Sanders
,
J. E.
,
Czerniecki
,
J. M.
, and
Fergason
,
J.
,
2002
, “
Transtibial Energy-Storage-and-Return Prosthetic Devices: A Review of Energy Concepts and a Proposed Nomenclature
,”
J. Rehabil. Res. Dev.
,
39
(
1
), pp.
1
12
.
43.
Hafner
,
B. J.
,
Sanders
,
J. E.
,
Czerniecki
,
J.
, and
Fergason
,
J.
,
2002
, “
Energy Storage and Return Prostheses: Does Patient Perception Correlate With Biomechanical Analysis?
,”
Clin. Biomech.
,
17
(
5
), pp.
325
344
.
44.
Unal
,
R.
,
Klijnstra
,
F.
,
Burkink
,
B.
,
Behrens
,
S.
,
Hekman
,
E.
,
Stramigioli
,
S.
,
Koopman
,
H.
, and
Carloni
,
R.
,
2013
, “
Modeling of Walkmech: A Fully-Passive Energy-Efficient Transfemoral Prosthesis Prototype
,”
2013 IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Seattle, WA, June 24–26.
45.
Romo
,
H. D.
,
2000
, “
Prosthetic Knees
,”
Phys. Med. Rehab Clin NA
,
11
(
3
), pp.
595
607
.
46.
Narang
,
Y. S.
, and
Winter
,
A. G.
,
2014
, “
Effects of Prosthesis Mass on Hip Energetics, Prosthetic Knee Torque, and Prosthetic Knee Stiffness and Damping Parameters Required for Transfemoral Amputees to Walk With Normative Kinematics
,”
ASME
Paper No. DETC2014-35065.
47.
Narang
,
Y.
,
Austin-Breneman
,
J.
,
Arelekatti
,
V. N. M.
, and
Winter
,
A.
,
2015
, “
Using Biomechanical and Human-Centered Analysis to Determine Design Requirements for a Prosthetic Knee for Use in India
,” (in review).
You do not currently have access to this content.