Quantification of the tricuspid valve (TV) leaflets mechanical strain is important in order to understand valve pathophysiology and to develop effective treatment strategies. Many of the traditional methods used to dynamically open and close the cardiac valves in vitro via flow simulators require valve dissection. Recent studies, however, have shown that restriction of the atrioventricular valve annuli could significantly change their in vivo deformation. For the first time, the porcine valve leaflets deformation was measured in a passive ex vivo beating heart without isolating and remounting the valve annuli. In particular, the right ventricular apexes of porcine hearts (n = 8) were connected to a pulse-duplicator pump that maintained a pulsatile flow from and to a reservoir connected to the right atrium and the pulmonary arteries. This pump provided a right ventricular pressure (RVP) waveform that closely matched physiological values, leading to opening and closure of the tricuspid and pulmonary valves (PVs). At the midsection of the valve leaflets, the peak areal strain was 9.8 ± 2.0% (mean±standard error). The peak strain was 5.6 ± 1.1% and 4.3 ± 1.0% in the circumferential and radial directions, respectively. Although the right ventricle was beating passively, the leaflet peak areal strains closely matched the values measured in other atrioventricular valves (i.e., the mitral valve (MV)) in vivo. This technique can be used to measure leaflet strains with and without the presence of valve lesions to help develop/evaluate treatment strategies to restore normal valve deformation.

References

References
1.
Hall
,
J. E.
,
2010
,
Guyton and Hall Textbook of Medical Physiology
,
Elsevier Health Sciences
,
Philadelphia, PA
.
2.
Vassileva
,
C. M.
,
Shabosky
,
J.
,
Boley
,
T.
,
Markwell
,
S.
, and
Hazelrigg
,
S.
,
2012
, “
Tricuspid Valve Surgery: The Past 10 Years From the Nationwide Inpatient Sample (NIS) Database
,”
J. Thorac. Cardiovasc. Surg.
,
143
(
5
), pp.
1043
1049
.
3.
Guenther
,
T.
,
Noebauer
,
C.
,
Mazzitelli
,
D.
,
Busch
,
R.
,
Tassani-Prell
,
P.
, and
Lange
,
R.
,
2008
, “
Tricuspid Valve Surgery: A Thirty-Year Assessment of Early and Late Outcome
,”
Eur. J. Cardio-Thorac. Surg.
,
34
(
2
), pp.
402
409
.
4.
Come
,
P. C.
, and
Riley
,
M. F.
,
1985
, “
Tricuspid Anular Dilatation and Failure of Tricuspid Leaflet Coaptation in Tricuspid Regurgitation
,”
Am. J. Cardiol.
,
55
(
5
), pp.
599
601
.
5.
Rausch
,
M. K.
,
Bothe
,
W.
,
Kvitting
,
J. E.
,
Göktepe
,
S.
,
Miller
,
D. C.
, and
Kuhl
,
E.
,
2011
, “
In Vivo Dynamic Strains of the Ovine Anterior Mitral Valve Leaflet
,”
J. Biomech.
,
44
(
6
), pp.
1149
1157
.
6.
Amini
,
R.
,
Eckert
,
C. E.
,
Koomalsingh
,
K.
,
McGarvey
,
J.
,
Minakawa
,
M.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2012
, “
On the In Vivo Deformation of the Mitral Valve Anterior Leaflet: Effects of Annular Geometry and Referential Configuration
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1455
1467
.
7.
Sacks
,
M. S.
,
Enomoto
,
Y.
,
Graybill
,
J. R.
,
Merryman
,
W. D.
,
Zeeshan
,
A.
,
Yoganathan
,
A. P.
,
Levy
,
R. J.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
,
2006
, “
In-Vivo Dynamic Deformation of the Mitral Valve Anterior Leaflet
,”
Ann. Thorac. Surg.
,
82
(
4
), pp.
1369
1377
.
8.
Sacks
,
M. S.
,
Merryman
,
W. D.
, and
Schmidt
,
D. E.
,
2009
, “
On the Biomechanics of Heart Valve Function
,”
J. Biomech.
,
42
(
12
), pp.
1804
1824
.
9.
Eckert
,
C. E.
,
Zubiate
,
B.
,
Vergnat
,
M.
,
Gorman
,
J. H.
, III
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2009
, “
In Vivo Dynamic Deformation of the Mitral Valve Annulus
,”
Ann. Biomed. Eng.
,
37
(
9
), pp.
1757
1771
.
10.
Krishnamurthy
,
G.
,
Itoh
,
A.
,
Bothe
,
W.
,
Swanson
,
J. C.
,
Kuhl
,
E.
,
Karlsson
,
M.
,
Miller
,
D. C.
, and
Ingels
,
N. B.
,
2009
, “
Stress–Strain Behavior of Mitral Valve Leaflets in the Beating Ovine Heart
,”
J. Biomech.
,
42
(
12
), pp.
1909
1916
.
11.
Krishnamurthy
,
G.
,
Itoh
,
A.
,
Swanson
,
J. C.
,
Bothe
,
W.
,
Karlsson
,
M.
,
Kuhl
,
E.
,
Miller
,
D. C.
, and
Ingels
,
N. B.
,
2009
, “
Regional Stiffening of the Mitral Valve Anterior Leaflet in the Beating Ovine Heart
,”
J. Biomech.
,
42
(
16
), pp.
2697
2701
.
12.
Sacks
,
M. S.
,
He
,
Z.
,
Baijens
,
L.
,
Wanant
,
S.
,
Shah
,
P.
,
Sugimoto
,
H.
, and
Yoganathan
,
A. P.
,
2002
, “
Surface Strains in the Anterior Leaflet of the Functioning Mitral Valve
,”
Ann. Biomed. Eng.
,
30
(
10
), pp.
1281
1290
.
13.
Hiro
,
M. E.
,
Jouan
,
J.
,
Pagel
,
M. R.
,
Lansac
,
E.
,
Lim
,
K. H.
,
Lim
,
H.
, and
Duran
,
C. M.
,
2004
, “
Sonometric Study of the Normal Tricuspid Valve Annulus in Sheep
,”
J. Heart Valve Dis.
,
13
(
3
), pp.
452
460
.
14.
Fawzy
,
H.
,
Fukamachi
,
K.
,
Mazer
,
C. D.
,
Harrington
,
A.
,
Latter
,
D.
,
Bonneau
,
D.
, and
Errett
,
L.
,
2011
, “
Complete Mapping of the Tricuspid Valve Apparatus Using Three-Dimensional Sonomicrometry
,”
J. Thorac. Cardiovasc. Surg.
,
141
(
4
), pp.
1037
1043
.
15.
Jouan
,
J.
,
Pagel
,
M. R.
,
Hiro
,
M. E.
,
Lim
,
K. H.
,
Lansac
,
E.
, and
Duran
,
C. M.
,
2007
, “
Further Information From a Sonometric Study of the Normal Tricuspid Valve Annulus in Sheep: Geometric Changes During the Cardiac Cycle
,”
J. Heart Valve Dis.
,
16
(
5
), pp.
511
518
.
16.
He
,
Z.
,
Ritchie
,
J.
,
Grashow
,
J. S.
,
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
,
2005
, “
In Vitro Dynamic Strain Behavior of the Mitral Valve Posterior Leaflet
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
504
511
.
17.
He
,
Z.
,
Sacks
,
M. S.
,
Baijens
,
L.
,
Wanant
,
S.
,
Shah
,
P.
, and
Yoganathan
,
A. P.
,
2003
, “
Effects of Papillary Muscle Position on In-Vitro Dynamic Strain on the Porcine Mitral Valve
,”
J. Heart Valve Dis.
,
12
(
4
), pp.
488
494
.
18.
Leopaldi
,
A.
,
Vismara
,
R.
,
Lemma
,
M.
,
Valerio
,
L.
,
Cervo
,
M.
,
Mangini
,
A.
,
Contino
,
M.
,
Redaelli
,
A.
,
Antona
,
C.
, and
Fiore
,
G.
,
2012
, “
In Vitro Hemodynamics and Valve Imaging in Passive Beating Hearts
,”
J. Biomech.
,
45
(
7
), pp.
1133
1139
.
19.
Chaudhury
,
R. A.
,
Atlasman
,
V.
,
Pathangey
,
G.
,
Pracht
,
N.
,
Adrian
,
R. J.
, and
Frakes
,
D. H.
,
2016
, “
A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models
,”
Cardiovasc. Eng. Technol.
,
7
(
2
), pp.
1
11
.
20.
Evin
,
M.
,
Guivier-Curien
,
C.
,
Pibarot
,
P.
,
Kadem
,
L.
, and
Rieu
,
R.
,
2016
, “
Are the Current Doppler Echocardiography Criteria Able to Discriminate Mitral Bileaflet Mechanical Heart Valve Malfunction? An In Vitro Study
,”
Artif. Organs
,
40
(
5
), pp.
52
60
.
21.
Trawiński
,
Z.
,
Wójcik
,
J.
,
Nowicki
,
A.
,
Olszewski
,
R.
,
Balcerzak
,
A.
,
Frankowska
,
E.
,
Zegadło
,
A.
, and
Rydzyński
,
P.
,
2015
, “
Strain Examinations of the Left Ventricle Phantom by Ultrasound and Multislices Computed Tomography Imaging
,”
Biocybern. Biomed. Eng.
,
35
(
4
), pp.
255
263
.
22.
Rahmani
,
B.
,
Tzamtzis
,
S.
,
Ghanbari
,
H.
,
Burriesci
,
G.
, and
Seifalian
,
A. M.
,
2012
, “
Manufacturing and Hydrodynamic Assessment of a Novel Aortic Valve Made of a New Nanocomposite Polymer
,”
J. Biomech.
,
45
(
7
), pp.
1205
1211
.
23.
Cygan
,
S.
,
Werys
,
K.
,
Błaszczyk
,
Ł.
,
Kubik
,
T.
, and
Kałużyński
,
K.
,
2014
, “
Left Ventricle Phantom and Experimental Setup for MRI and Echocardiography–Preliminary Results of Data Acquisitions
,”
Biocybern. Biomed. Eng.
,
34
(
1
), pp.
19
24
.
24.
Nolan
,
S. P.
,
1994
, “
The International Standard Cardiovascular Implants—Cardiac Valve Prostheses (ISO 5840:1989) and the FDA Draft Replacement Heart Valve Guidance (Version 4.0)
,”
J. Heart Valve Dis.
,
3
(
4
), pp.
347
349
.
25.
Amini
,
R.
,
Voycheck
,
C. A.
, and
Debski
,
R. E.
,
2014
, “
A Method for Predicting Collagen Fiber Realignment in Non-Planar Tissue Surfaces as Applied to Glenohumeral Capsule During Clinically Relevant Deformation
,”
ASME J. Biomech. Eng.
,
136
(
3
), p.
031003
.
26.
Filas
,
B. A.
,
Knutsen
,
A. K.
,
Bayly
,
P. V.
, and
Taber
,
L. A.
,
2008
, “
A New Method for Measuring Deformation of Folding Surfaces During Morphogenesis
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061010
.
27.
Mohrman
,
D. E.
, and
Heller
,
L. J.
,
2002
,
Cardiovascular Physiology
,
McGraw-Hill
,
New York
.
28.
Greyson
,
C.
,
Xu
,
Y.
,
Cohen
,
J.
, and
Schwartz
,
G. G.
,
1997
, “
Right Ventricular Dysfunction Persists Following Brief Right Ventricular Pressure Overload
,”
Cardiovasc. Res.
,
34
(
2
), pp.
281
288
.
29.
Greyson
,
C.
,
Xu
,
Y.
,
Lu
,
L.
, and
Schwartz
,
G. G.
,
2000
, “
Right Ventricular Pressure and Dilation During Pressure Overload Determine Dysfunction After Pressure Overload
,”
Am. J. Physiol.
,
278
(
5
), pp.
H1414
1420
.
30.
Schmitto
,
J. D.
,
Doerge
,
H.
,
Post
,
H.
,
Coulibaly
,
M.
,
Sellin
,
C.
,
Popov
,
A. F.
,
Sossalla
,
S.
, and
Schoendube
,
F. A.
,
2009
, “
Progressive Right Ventricular Failure is Not Explained by Myocardial Ischemia in a Pig Model of Right Ventricular Pressure Overload
,”
Eur. J. Cardio-Thorac. Surg.
,
35
(
2
), pp.
229
234
.
31.
Solomon
,
S. B.
, and
Glantz
,
S. A.
,
1999
, “
Regional Ischemia Increases Sensitivity of Left Ventricular Relaxation to Volume in Pigs
,”
Am. J. Physiol.
,
276
(
6 Pt 2
), pp.
H1994
2005
.
32.
Redington
,
A. N.
,
Gray
,
H. H.
,
Hodson
,
M. E.
,
Rigby
,
M. L.
, and
Oldershaw
,
P. J.
,
1988
, “
Characterisation of the Normal Right Ventricular Pressure-Volume Relation by Biplane Angiography and Simultaneous Micromanometer Pressure Measurements
,”
Br. Heart J.
,
59
(
1
), pp.
23
30
.
33.
Hannon
,
J. P.
,
Bossone
,
C. A.
, and
Wade
,
C. E.
,
1990
, “
Normal Physiological Values for Conscious Pigs Used in Biomedical Research
,”
Lab. Anim. Sci.
,
40
(
3
), pp.
293
298
.
34.
May-Newman
,
K.
, and
Yin
,
F. C.
,
1995
, “
Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets
,”
Am. J. Physiol.
,
269
(
4 Pt 2
), pp.
H1319
1327
.
35.
Billiar
,
K.
, and
Sacks
,
M.
,
1997
, “
A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,”
J. Biomech.
,
30
(
7
), pp.
753
756
.
36.
Khoiy
,
K. A.
, and
Amini
,
R.
,
2016
, “
On the Biaxial Mechanical Response of Porcine Tricuspid Valve Leaflets
,”
ASME J. Biomech. Eng.
,
138
(
10
), p.
104504
.
37.
Martin
,
C.
, and
Sun
,
W.
,
2012
, “
Biomechanical Characterization of Aortic Valve Tissue in Humans and Common Animal Models
,”
J. Biomed. Mater. Res., Part A
,
100
(
6
), pp.
1591
1599
.
38.
Gorman
,
J. H.
,
Jackson
,
B. M.
,
Enomoto
,
Y.
, and
Gorman
,
R. C.
,
2004
, “
The Effect of Regional Ischemia on Mitral Valve Annular Saddle Shape
,”
Ann. Thorac. Surg.
,
77
(
2
), pp.
544
548
.
39.
Gorman
,
J. H.
,
Gorman
,
R. C.
,
Jackson
,
B. M.
,
Enomoto
,
Y.
,
John-Sutton
,
M. G. S.
, and
Edmunds
,
L. H.
,
2003
, “
Annuloplasty Ring Selection for Chronic Ischemic Mitral Regurgitation: Lessons From the Ovine Model
,”
Ann. Thorac. Surg.
,
76
(
5
), pp.
1556
1563
.
40.
Gorman
,
J. H.
,
Gupta
,
K. B.
,
Streicher
,
J. T.
,
Gorman
,
R. C.
,
Jackson
,
B. M.
,
Ratcliffe
,
M. B.
,
Bogen
,
D. K.
, and
Edmunds
,
L. H.
,
1996
, “
Dynamic Three-Dimensional Imaging of the Mitral Valve and Left Ventricle by Rapid Sonomicrometry Array Localization
,”
J. Thorac. Cardiovasc. Surg.
,
112
(
3
), pp.
712
724
.
41.
Ge
,
L.
,
Morrel
,
W. G.
,
Ward
,
A.
,
Mishra
,
R.
,
Zhang
,
Z.
,
Guccione
,
J. M.
,
Grossi
,
E. A.
, and
Ratcliffe
,
M. B.
,
2014
, “
Measurement of Mitral Leaflet and Annular Geometry and Stress After Repair of Posterior Leaflet Prolapse: Virtual Repair Using a Patient-Specific Finite Element Simulation
,”
Ann. Thorac. Surg.
,
97
(
5
), pp.
1496
1503
.
42.
Biswas
,
D.
,
Casey
,
D.
,
Crowder
,
D.
,
Steinman
,
D. A.
,
Yun
,
H. Y.
, and
Loth
,
F.
,
2016
, “
Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions
,”
ASME J. Biomech. Eng.
,
138
(
7
), p.
071001
.
You do not currently have access to this content.