The microvasculature is an extensive, heterogeneous, and complex system that plays a critical role in human physiology and disease. It nourishes almost all living human cells and maintains a local microenvironment that is vital for tissue and organ function. Operating under a state of continuous flow, with an intricate architecture despite its small caliber, and subject to a multitude of biophysical and biochemical stimuli, the microvasculature can be a complex subject to study in the laboratory setting. Engineered microvessels provide an ideal platform that recapitulates essential elements of in vivo physiology and allows study of the microvasculature in a precise and reproducible way. Here, we review relevant structural and functional vascular biology, discuss different methods to engineer microvessels, and explore the applications of this exciting tool for the study of human disease.

References

References
1.
Zheng
,
Y.
,
Chen
,
J.
, and
López
,
J. A.
,
2014
, “
Microvascular Platforms for the Study of Platelet-Vessel Wall Interactions
,”
Thromb. Res.
,
133
(
4
), pp.
525
531
.
2.
Hasan
,
A.
,
Paul
,
A.
,
Vrana
,
N. E.
,
Zhao
,
X.
,
Memic
,
A.
,
Hwang
,
Y.-S.
,
Dokmeci
,
M. R.
, and
Khademhosseini
,
A.
,
2014
, “
Microfluidic Techniques for Development of 3D Vascularized Tissue
,”
Biomaterials
,
35
(
26
), pp.
7308
7325
.
3.
Bae
,
H.
,
Puranik
,
A. S.
,
Gauvin
,
R.
,
Edalat
,
F.
,
Carrillo-Conde
,
B.
,
Peppas
,
N. A.
, and
Khademhosseini
,
A.
,
2012
, “
Building Vascular Networks
,”
Sci. Transl. Med.
,
4
(
160
), p.
160ps23
.
4.
Laschke
,
M. W.
, and
Menger
,
M. D.
,
2015
, “
Prevascularization in Tissue Engineering: Current Concepts and Future Directions
,”
Biotechnol. Adv.
,
34
(
2
), pp.
112
121
.
5.
Ross
,
M. H.
, and
Pawlina
,
W.
,
2006
,
Histology: A Text and Atlas: With Correlated Cell and Molecular Biology
,
Lippincott Wiliams & Wilkins
,
Baltimore, MD
.
6.
Feihl
,
F.
,
Liaudet
,
L.
,
Waeber
,
B.
, and
Levy
,
B. I.
,
2006
, “
Hypertension: A Disease of the Microcirculation?
,”
Hypertension
,
48
(
6
), pp.
1012
1017
.
7.
Gökçinar-Yagci
,
B.
,
Uçkan-Çetinkaya
,
D.
, and
Çelebi-Saltik
,
B.
,
2015
, “
Pericytes: Properties, Functions and Applications in Tissue Engineering
,”
Stem Cell Rev.
,
11
(
4
), pp.
549
559
.
8.
Van Dijk
,
C. G. M.
,
Nieuweboer
,
F. E.
,
Pei
,
J. Y.
,
Xu
,
Y. J.
,
Burgisser
,
P.
,
Van Mulligen
,
E.
,
El Azzouzi
,
H.
,
Duncker
,
D. J.
,
Verhaar
,
M. C.
, and
Cheng
,
C.
,
2015
, “
The Complex Mural Cell: Pericyte Function in Health and Disease
,”
Int. J. Cardiol.
,
190
(
1
), pp.
75
89
.
9.
Pries
,
A.
, and
Kuebler
,
W.
,
2006
, “
Normal Endothelium
,”
Handb. Exp. Pharmacol.
,
176
(
1
), pp.
1
40
.
10.
Aird
,
W. C.
,
2015
, “
Endothelium and Haemostasis
,”
Hamostaseologie
,
35
(
1
), pp.
11
16
.
11.
Weibel
,
E. R.
, and
Palade
,
G. E.
,
1964
, “
New Cytoplasmic Components in Arterial Endothelia
,”
J. Cell Biol.
,
23
(
1
), pp.
101
112
.
12.
Hack
,
C. E.
, and
Zeerleder
,
S.
,
2001
, “
The Endothelium in Sepsis: Source of and a Target for Inflammation
,”
Crit. Care Med.
,
29
(
7 Suppl.
), pp.
S21
S27
.
13.
Flammer
,
A. J.
,
Anderson
,
T.
,
Celermajer
,
D. S.
,
Creager
,
M. A.
,
Deanfield
,
J.
,
Ganz
,
P.
,
Hamburg
,
N. M.
,
Lüscher
,
T. F.
,
Shechter
,
M.
,
Taddei
,
S.
,
Vita
,
J. A.
, and
Lerman
,
A.
,
2012
, “
The Assessment of Endothelial Function: From Research Into Clinical Practice
,”
Circulation
,
126
(
6
), pp.
753
767
.
14.
Gutterman
,
D. D.
,
Chabowski
,
D. S.
,
Kadlec
,
A. O.
,
Durand
,
M. J.
,
Freed
,
J. K.
,
Ait-Aissa
,
K.
, and
Beyer
,
A. M.
,
2016
, “
The Human Microcirculation
,”
Circ. Res.
,
118
(
1
), pp.
157
172
.
15.
Levy
,
B. I.
,
Ambrosio
,
G.
,
Pries
,
A. R.
, and
Struijker-Boudier
,
H. A.
,
2001
, “
Microcirculation in Hypertension: A New Target for Treatment?
,”
Circulation
,
104
(
6
), pp.
735
740
.
16.
Archer
,
S. L.
,
Weir
,
E. K.
, and
Wilkins
,
M. R.
,
2010
, “
Basic Science of Pulmonary Arterial Hypertension for Clinicians: New Concepts and Experimental Therapies
,”
Circulation
,
121
(
18
), pp.
2045
2066
.
17.
Budhiraja
,
R.
,
Tuder
,
R. M.
, and
Hassoun
,
P. M.
,
2004
, “
Endothelial Dysfunction in Pulmonary Hypertension
,”
Circulation
,
109
(
2
), pp.
159
165
.
18.
Gross
,
P. L.
, and
Aird
,
W. C.
,
2000
, “
The Endothelium and Thrombosis
,”
Semin. Thromb. Hemostasis
,
26
(
5
), pp.
463
478
.
19.
López
,
J. A.
, and
Zheng
,
Y.
,
2013
, “
Synthetic Microvessels
,”
J. Thromb. Haemostasis
,
11
(Suppl.
1
), pp.
67
74
.
20.
Schouten
,
M.
,
Wiersinga
,
W. J.
,
Levi
,
M.
, and
van der Poll
,
T.
,
2008
, “
Inflammation, Endothelium, and Coagulation in Sepsis
,”
J. Leukocyte Biol.
,
83
(
3
), pp.
536
545
.
21.
Mehta
,
D.
,
Ravindran
,
K.
, and
Kuebler
,
W. M.
,
2014
, “
Novel Regulators of Endothelial Barrier Function
,”
Am. J. Physiol.: Lung Cell. Mol. Physiol.
,
307
(
12
), pp.
L924
935
.
22.
Kerbel
,
R. S.
,
2008
, “
Tumor Angiogenesis
,”
N. Engl. J. Med.
,
358
(
19
), pp.
2039
2049
.
23.
Van Hinsbergh
,
V. W.
,
1997
, “
Endothelial Permeability for Macromolecules. Mechanistic Aspects of Pathophysiological Modulation
,”
Arterioscler., Thromb., Vasc. Biol.
,
17
(
6
), pp.
1018
1023
.
24.
Vane
,
J. R.
,
Anggård
,
E. E.
, and
Botting
,
R. M.
,
1990
, “
Regulatory Functions of the Vascular Endothelium
,”
N. Engl. J. Med.
,
323
(
1
), pp.
27
36
.
25.
Wagner
,
D. D.
, and
Frenette
,
P. S.
,
2008
, “
The Vessel Wall and Its Interactions
,”
Blood
,
111
(
11
), pp.
5271
5281
.
26.
Andreeva
,
E. R.
,
Pugach
,
I. M.
,
Gordon
,
D.
, and
Orekhov
,
A. N.
,
1998
, “
Continuous Subendothelial Network Formed by Pericyte-Like Cells in Human Vascular Bed
,”
Tissue Cell
,
30
(
1
), pp.
127
135
.
27.
Bergers
,
G.
, and
Song
,
S.
,
2005
, “
The Role of Pericytes in Blood-Vessel Formation and Maintenance
,”
Neuro Oncol.
,
7
(
4
), pp.
452
464
.
28.
Crisan
,
M.
,
Corselli
,
M.
,
Chen
,
W. C. W.
, and
Péault
,
B.
,
2012
, “
Perivascular Cells for Regenerative Medicine
,”
J. Cell. Mol. Med.
,
16
(
12
), pp.
2851
2860
.
29.
Gerhardt
,
H.
, and
Betsholtz
,
C.
,
2003
, “
Endothelial-Pericyte Interactions in Angiogenesis
,”
Cell Tissue Res.
,
314
(
1
), pp.
15
23
.
30.
Sims
,
D. E.
,
2000
, “
Diversity Within Pericytes
,”
Clin. Exp. Pharmacol. Physiol.
,
27
(
10
), pp.
842
846
.
31.
Crisan
,
M.
,
Yap
,
S.
,
Casteilla
,
L.
,
Chen
,
C. W.
,
Corselli
,
M.
,
Park
,
T. S.
,
Andriolo
,
G.
,
Sun
,
B.
,
Zheng
,
B.
,
Zhang
,
L.
,
Norotte
,
C.
,
Teng
,
P. N.
,
Traas
,
J.
,
Schugar
,
R.
,
Deasy
,
B. M.
,
Badylak
,
S.
,
Buhring
,
H. J.
,
Giacobino
,
J. P.
,
Lazzari
,
L.
,
Huard
,
J.
, and
Péault
,
B.
,
2008
, “
A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs
,”
Cell Stem Cell
,
3
(
3
), pp.
301
313
.
32.
Hung
,
C.
,
Linn
,
G.
,
Chow
,
Y. H.
,
Kobayashi
,
A.
,
Mittelsteadt
,
K.
,
Altemeier
,
W. A.
,
Gharib
,
S. A.
,
Schnapp
,
L. M.
, and
Duffield
,
J. S.
,
2013
, “
Role of Lung Pericytes and Resident Fibroblasts in the Pathogenesis of Pulmonary Fibrosis
,”
Am. J. Respir. Crit. Care Med.
,
188
(
7
), pp.
820
830
.
33.
Lin
,
S.-L.
,
Kisseleva
,
T.
,
Brenner
,
D. A.
, and
Duffield
,
J. S.
,
2008
, “
Pericytes and Perivascular Fibroblasts are the Primary Source of Collagen-Producing Cells in Obstructive Fibrosis of the Kidney
,”
Am. J. Pathol.
,
173
(
6
), pp.
1617
1627
.
34.
Majesky
,
M. W.
,
2007
, “
Developmental Basis of Vascular Smooth Muscle Diversity
,”
Arterioscler., Thromb., Vasc. Biol.
,
27
(
6
), pp.
1248
1258
.
35.
Rensen
,
S. S. M.
,
Doevendans
,
P. A. F. M.
, and
van Eys
,
G. J. J. M.
,
2007
, “
Regulation and Characteristics of Vascular Smooth Muscle Cell Phenotypic Diversity
,”
Neth. Heart J.
,
15
(
3
), pp.
100
108
.
36.
LeBleu
,
V. S.
,
Macdonald
,
B.
, and
Kalluri
,
R.
,
2007
, “
Structure and Function of Basement Membranes
,”
Exp. Biol. Med.
,
232
(
9
), pp.
1121
1129
.
37.
Carmeliet
,
P.
, and
Jain
,
R. K.
,
2011
, “
Molecular Mechanisms and Clinical Applications of Angiogenesis
,”
Nature
,
473
(
7347
), pp.
298
307
.
38.
Frantz
,
C.
,
Stewart
,
K. M.
, and
Weaver
,
V. M.
,
2010
, “
The Extracellular Matrix at a Glance
,”
J. Cell Sci.
,
123
(
24
), pp.
4195
4200
.
39.
Davis
,
G. E.
, and
Senger
,
D. R.
,
2005
, “
Endothelial Extracellular Matrix: Biosynthesis, Remodeling, and Functions During Vascular Morphogenesis and Neovessel Stabilization
,”
Circ. Res.
,
97
(
11
), pp.
1093
1107
.
40.
Ribatti
,
D.
,
Vacca
,
A.
,
Nico
,
B.
,
Roncali
,
L.
, and
Dammacco
,
F.
,
2001
, “
Postnatal Vasculogenesis
,”
Mech. Dev.
,
100
(
2
), pp.
157
163
.
41.
McDonald
,
J. C.
, and
Whitesides
,
G. M.
,
2002
, “
Poly(Dimethylsiloxane) as a Material for Fabricating Microfluidic Devices
,”
Acc. Chem. Res.
,
35
(
7
), pp.
491
499
.
42.
Augst
,
A. D.
,
Kong
,
H. J.
, and
Mooney
,
D. J.
,
2006
, “
Alginate Hydrogels as Biomaterials
,”
Macromol. Biosci.
,
6
(
8
), pp.
623
633
.
43.
Ling
,
Y.
,
Rubin
,
J.
,
Deng
,
Y.
,
Huang
,
C.
,
Demirci
,
U.
,
Karp
,
J. M.
, and
Khademhosseini
,
A.
,
2007
, “
A Cell-Laden Microfluidic Hydrogel
,”
Lab Chip
,
7
(
6
), pp.
756
762
.
44.
Bayless
,
K. J.
, and
Davis
,
G. E.
,
2003
, “
Sphingosine-1-Phosphate Markedly Induces Matrix Metalloproteinase and Integrin-Dependent Human Endothelial Cell Invasion and Lumen Formation in Three-Dimensional Collagen and Fibrin Matrices
,”
Biochem. Biophys. Res. Commun.
,
312
(
4
), pp.
903
913
.
45.
Hutson
,
C. B.
,
Nichol
,
J. W.
,
Aubin
,
H.
,
Bae
,
H.
,
Yamanlar
,
S.
,
Al-Haque
,
S.
,
Koshy
,
S. T.
, and
Khademhosseini
,
A.
,
2011
, “
Synthesis and Characterization of Tunable Poly(Ethylene Glycol): Gelatin Methacrylate Composite Hydrogels
,”
Tissue Eng., Part A
,
17
(
13–14
), pp.
1713
1723
.
46.
Nichol
,
J. W.
,
Koshy
,
S. T.
,
Bae
,
H.
,
Hwang
,
C. M.
,
Yamanlar
,
S.
, and
Khademhosseini
,
A.
,
2010
, “
Cell-Laden Microengineered Gelatin Methacrylate Hydrogels
,”
Biomaterials
,
31
(
21
), pp.
5536
5544
.
47.
Lee
,
H.
,
Chung
,
M.
, and
Jeon
,
N. L.
,
2014
, “
Microvasculature: An Essential Component for Organ-on-Chip Systems
,”
MRS Bull.
,
39
(
01
), pp.
51
59
.
48.
Chrobak
,
K. M.
,
Potter
,
D. R.
, and
Tien
,
J.
,
2006
, “
Formation of Perfused, Functional Microvascular Tubes In Vitro
,”
Microvasc. Res.
,
71
(
3
), pp.
185
196
.
49.
Golden
,
A. P.
, and
Tien
,
J.
,
2007
, “
Fabrication of Microfluidic Hydrogels Using Molded Gelatin as a Sacrificial Element
,”
Lab Chip
,
7
(
6
), pp.
720
725
.
50.
Zheng
,
Y.
,
Chen
,
J.
,
Craven
,
M.
,
Choi
,
N. W.
,
Totorica
,
S.
,
Diaz-Santana
,
A.
,
Kermani
,
P.
,
Hempstead
,
B.
,
Fischbach-Teschl
,
C.
,
López
,
J. A.
, and
Stroock
,
A. D.
,
2012
, “
In Vitro Microvessels for the Study of Angiogenesis and Thrombosis
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
24
), pp.
9342
9347
.
51.
Yeon
,
J. H.
,
Ryu
,
H. R.
,
Chung
,
M.
,
Hu
,
Q. P.
, and
Jeon
,
N. L.
,
2012
, “
In Vitro Formation and Characterization of a Perfusable Three-Dimensional Tubular Capillary Network in Microfluidic Devices
,”
Lab Chip
,
12
(
16
), pp.
2815
2822
.
52.
Price
,
G. M.
,
Wong
,
K. H. K.
,
Truslow
,
J. G.
,
Leung
,
A. D.
,
Acharya
,
C.
, and
Tien
,
J.
,
2010
, “
Effect of Mechanical Factors on the Function of Engineered Human Blood Microvessels in Microfluidic Collagen Gels
,”
Biomaterials
,
31
(
24
), pp.
6182
6189
.
53.
Yoshida
,
H.
,
Matsusaki
,
M.
, and
Akashi
,
M.
,
2013
, “
Multilayered Blood Capillary Analogs in Biodegradable Hydrogels for In Vitro Drug Permeability Assays
,”
Adv. Funct. Mater.
,
23
(
14
), pp.
1736
1742
.
54.
Bischel
,
L. L.
,
Young
,
E. W. K.
,
Mader
,
B. R.
, and
Beebe
,
D. J.
,
2013
, “
Tubeless Microfluidic Angiogenesis Assay With Three-Dimensional Endothelial-Lined Microvessels
,”
Biomaterials
,
34
(
5
), pp.
1471
1477
.
55.
Miller
,
J. S.
,
Stevens
,
K. R.
,
Yang
,
M. T.
,
Baker
,
B. M.
,
Nguyen
,
D.-H. T.
,
Cohen
,
D. M.
,
Toro
,
E.
,
Chen
,
A. A.
,
Galie
,
P. A.
,
Yu
,
X.
,
Chaturvedi
,
R.
,
Bhatia
,
S. N.
, and
Chen
,
C. S.
,
2012
, “
Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-Dimensional Tissues
,”
Nat. Mater.
,
11
(
7
), pp.
768
774
.
56.
Bogorad
,
M. I.
,
DeStefano
,
J.
,
Karlsson
,
J.
,
Wong
,
A. D.
,
Gerecht
,
S.
, and
Searson
,
P. C.
,
2015
, “
Review: In Vitro Microvessel Models
,”
Lab Chip
,
15
(
22
), pp.
4242
4255
.
57.
Nikkhah
,
M.
,
Edalat
,
F.
,
Manoucheri
,
S.
, and
Khademhosseini
,
A.
,
2012
, “
Engineering Microscale Topographies to Control the Cell-Substrate Interface
,”
Biomaterials
,
33
(
21
), pp.
5230
5246
.
58.
Raghavan
,
S.
,
Nelson
,
C. M.
,
Baranski
,
J. D.
,
Lim
,
E.
, and
Chen
,
C. S.
,
2010
, “
Geometrically Controlled Endothelial Tubulogenesis in Micropatterned Gels
,”
Tissue Eng., Part A
,
16
(
7
), pp.
2255
2263
.
59.
Nikkhah
,
M.
,
Eshak
,
N.
,
Zorlutuna
,
P.
,
Annabi
,
N.
,
Castello
,
M.
,
Kim
,
K.
,
Dolatshahi-Pirouz
,
A.
,
Edalat
,
F.
,
Bae
,
H.
,
Yang
,
Y.
, and
Khademhosseini
,
A.
,
2012
, “
Directed Endothelial Cell Morphogenesis in Micropatterned Gelatin Methacrylate Hydrogels
,”
Biomaterials
,
33
(
35
), pp.
9009
9018
.
60.
Hsu
,
Y.-H.
,
Moya
,
M. L.
,
Hughes
,
C. C. W.
,
George
,
S. C.
, and
Lee
,
A. P.
,
2013
, “
A Microfluidic Platform for Generating Large-Scale Nearly Identical Human Microphysiological Vascularized Tissue Arrays
,”
Lab Chip
,
13
(
15
), pp.
2990
2998
.
61.
Kusuma
,
S.
,
Shen
,
Y.-I.
,
Hanjaya-Putra
,
D.
,
Mali
,
P.
,
Cheng
,
L.
, and
Gerecht
,
S.
,
2013
, “
Self-Organized Vascular Networks From Human Pluripotent Stem Cells in a Synthetic Matrix
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
31
), pp.
12601
12606
.
62.
Kim
,
S.
,
Lee
,
H.
,
Chung
,
M.
, and
Jeon
,
N. L.
,
2013
, “
Engineering of Functional, Perfusable 3D Microvascular Networks on a Chip
,”
Lab Chip
,
13
(
8
), pp.
1489
1500
.
63.
Nillesen
,
S. T. M.
,
Geutjes
,
P. J.
,
Wismans
,
R.
,
Schalkwijk
,
J.
,
Daamen
,
W. F.
, and
van Kuppevelt
,
T. H.
,
2007
, “
Increased Angiogenesis and Blood Vessel Maturation in Acellular Collagen-Heparin Scaffolds Containing Both FGF2 and VEGF
,”
Biomaterials
,
28
(
6
), pp.
1123
1131
.
64.
Barkefors
,
I.
,
Le Jan
,
S.
,
Jakobsson
,
L.
,
Hejll
,
E.
,
Carlson
,
G.
,
Johansson
,
H.
,
Jarvius
,
J.
,
Jeong
,
W. P.
,
Noo
,
L. J.
, and
Kreuger
,
J.
,
2008
, “
Endothelial Cell Migration in Stable Gradients of Vascular Endothelial Growth Factor A and Fibroblast Growth Factor 2: Effects on Chemotaxis and Chemokinesis
,”
J. Biol. Chem.
,
283
(
20
), pp.
13905
13912
.
65.
Nguyen
,
D.-H. T.
,
Stapleton
,
S. C.
,
Yang
,
M. T.
,
Cha
,
S. S.
,
Choi
,
C. K.
,
Galie
,
P. A.
, and
Chen
,
C. S.
,
2013
, “
Biomimetic Model to Reconstitute Angiogenic Sprouting Morphogenesis In Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
17
), pp.
6712
6717
.
66.
Wong
,
K. H. K.
,
Chan
,
J. M.
,
Kamm
,
R. D.
, and
Tien
,
J.
,
2012
, “
Microfluidic Models of Vascular Functions
,”
Annu. Rev. Biomed. Eng.
,
14
(
1
), pp.
205
230
.
67.
Estrada
,
R.
,
Giridharan
,
G. A.
,
Nguyen
,
M. D.
,
Prabhu
,
S. D.
, and
Sethu
,
P.
,
2011
, “
Microfluidic Endothelial Cell Culture Model to Replicate Disturbed Flow Conditions Seen in Atherosclerosis Susceptible Regions
,”
Biomicrofluidics
,
5
(
3
), pp.
1
11
.
68.
Westein
,
E.
,
van der Meer
,
A. D.
,
Kuijpers
,
M. J. E.
,
Frimat
,
J.-P.
,
van den Berg
,
A.
, and
Heemskerk
,
J. W. M.
,
2013
, “
Atherosclerotic Geometries Exacerbate Pathological Thrombus Formation Poststenosis in a Von Willebrand Factor-Dependent Manner
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
4
), pp.
1357
1362
.
69.
Zheng
,
Y.
,
Chen
,
J.
, and
López
,
J. A.
,
2015
, “
Flow-Driven Assembly of VWF Fibres and Webs in In Vitro Microvessels
,”
Nat. Commun.
,
6
(7858), p.
7858
.
70.
Dimasi
,
A.
,
Rasponi
,
M.
,
Sheriff
,
J.
,
Chiu
,
W. C.
,
Bluestein
,
D.
,
Tran
,
P. L.
,
Slepian
,
M. J.
, and
Redaelli
,
A.
,
2015
, “
Microfluidic Emulation of Mechanical Circulatory Support Device Shear-Mediated Platelet Activation
,”
Biomed. Microdevices
,
17
(
6
), pp.
1
11
.
71.
Young
,
E. W. K.
,
Watson
,
M. W. L.
,
Srigunapalan
,
S.
,
Wheeler
,
A. R.
, and
Simmons
,
C. A.
,
2010
, “
Technique for Real-Time Measurements of Endothelial Permeability in a Microfluidic Membrane Chip Using Laser-Induced Fluorescence Detection
,”
Anal. Chem.
,
82
(
3
), pp.
808
816
.
72.
Zervantonakis
,
I. K.
,
Hughes-Alford
,
S. K.
,
Charest
,
J. L.
,
Condeelis
,
J. S.
,
Gertler
,
F. B.
, and
Kamm
,
R. D.
,
2012
, “
Three-Dimensional Microfluidic Model for Tumor Cell Intravasation and Endothelial Barrier Function
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
34
), pp.
13515
13520
.
73.
Booth
,
R.
, and
Kim
,
H.
,
2012
, “
Characterization of a Microfluidic In Vitro Model of the Blood–Brain Barrier (μBBB)
,”
Lab Chip
,
12
(
10
), pp.
1784
1792
.
74.
Rusanov
,
A. L.
,
Luzgina
,
N. G.
,
Barreto
,
G. E.
, and
Aliev
,
G.
,
2016
, “
Role of Microfluidics in Blood–Brain Barrier Permeability Cell Culture Modeling: Relevance to CNS Disorders
,”
CNS Neurol. Disord.: Drug Targets
,
15
(
3
), pp.
301
309
.
75.
Butcher
,
E. C.
,
1991
, “
Leukocyte-Endothelial Cell Recognition: Three (or More) Steps to Specificity and Diversity
,”
Cell
,
67
(
6
), pp.
1033
1036
.
76.
Kim
,
E.
,
Schueller
,
O.
, and
Sweetnam
,
P. M.
,
2012
, “
Targeting the Leukocyte Activation Cascade: Getting to the Site of Inflammation Using Microfabricated Assays
,”
Lab Chip
,
12
(
12
), pp.
2255
2264
.
77.
Molteni
,
R.
,
Bianchi
,
E.
,
Patete
,
P.
,
Fabbri
,
M.
,
Baroni
,
G.
,
Dubini
,
G.
, and
Pardi
,
R.
,
2014
, “
A Novel Device to Concurrently Assess Leukocyte Extravasation and Interstitial Migration Within a Defined 3D Environment
,”
Lab Chip
,
15
(1), pp.
195
207
.
78.
Han
,
S.
,
Yan
,
J.-J.
,
Shin
,
Y.
,
Jeon
,
J. J.
,
Won
,
J.
,
Jeong
,
H. E.
,
Kamm
,
R. D.
,
Kim
,
Y.-J.
, and
Chung
,
S.
,
2012
, “
A Versatile Assay for Monitoring In Vivo-Like Transendothelial Migration of Neutrophils
,”
Lab Chip
,
12
(
20
), pp.
3861
3865
.
79.
Hamza
,
B.
, and
Irimia
,
D.
,
2015
, “
Whole Blood Human Neutrophil Trafficking in a Microfluidic Model of Infection and Inflammation
,”
Lab Chip
,
15
(
12
), pp.
2625
2633
.
80.
Jain
,
N. G.
,
Wong
,
E. A.
,
Aranyosi
,
A. J.
,
Boneschansker
,
L.
,
Markmann
,
J. F.
,
Briscoe
,
D. M.
, and
Irimia
,
D.
,
2015
, “
Microfluidic Mazes to Characterize T-Cell Exploration Patterns Following Activation In Vitro
,”
Integr. Biol.
,
7
(
11
), pp.
1423
1431
.
81.
Preira
,
P.
,
Forel
,
J.-M.
,
Robert
,
P.
,
Nègre
,
P.
,
Biarnes-Pelicot
,
M.
,
Xeridat
,
F.
,
Bongrand
,
P.
,
Papazian
,
L.
,
Theodoly
,
O.
,
Negre
,
P.
,
Biarnes-Pelicot
,
M.
,
Xeridat
,
F.
,
Bongrand
,
P.
,
Papazian
,
L.
, and
Theodoly
,
O.
,
2016
, “
The Leukocyte-Stiffening Property of Plasma in Early Acute Respiratory Distress Syndrome (ARDS) Revealed by a Microfluidic Single-Cell Study: The Role of Cytokines and Protection With Antibodies
,”
Crit. Care
,
20
(
1
), p.
8
.
82.
Kotz
,
K. T.
,
Xiao
,
W.
,
Miller-Graziano
,
C.
,
Qian
,
W.
,
Russom
,
A.
,
Warner
,
E. A.
,
Moldawer
,
L. L.
,
De
,
A.
,
Bankey
,
P. E.
,
Petritis
,
B. O.
,
Camp
,
D. G.
,
Rosenbach
,
A. E.
,
Goverman
,
J.
,
Fagan
,
S. P.
,
Brownstein
,
B. H.
,
Irimia
,
D.
,
Xu
,
W.
,
Wilhelmy
,
J.
,
Mindrinos
,
M. N.
,
Smith
,
R. D.
,
Davis
,
R. W.
,
Tompkins
,
R. G.
, and
Toner
,
M.
,
Inflammation and the Host Response to Injury Collaborative Research Program
,
2010
, “
Clinical Microfluidics for Neutrophil Genomics and Proteomics
,”
Nat. Med.
,
16
(
9
), pp.
1042
1047
.
83.
Rosenberg
,
R. D.
, and
Aird
,
W. C.
,
1999
, “
Vascular-Bed Specific Hemostasis and Hypercoagulable States
,”
N. Engl. J. Med.
,
340
(
20
), pp.
1555
1564
.
84.
Rumbaut
,
R. E.
,
Slaff
,
D. W.
, and
Burns
,
A. R.
,
2005
, “
Microvascular Thrombosis Models in Venules and Arterioles In Vivo
,”
Microcirculation
,
12
(
3
), pp.
259
274
.
85.
Levi
,
M.
,
Keller
,
T. T.
,
van Gorp
,
E.
, and
ten Cate
,
H.
,
2003
, “
Infection and Inflammation and the Coagulation System
,”
Cardiovasc. Res.
,
60
(
1
), pp.
26
39
.
86.
Ruggeri
,
Z. M.
,
2009
, “
Platelet Adhesion Under Flow
,”
Microcirculation
,
16
(
1
), pp.
58
83
.
87.
Higgins
,
J. M.
,
Eddington
,
D. T.
,
Bhatia
,
S. N.
, and
Mahadevan
,
L.
,
2007
, “
Sickle Cell Vasoocclusion and Rescue in a Microfluidic Device
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
51
), pp.
20496
20500
.
88.
Tsai
,
M.
,
Kita
,
A.
,
Leach
,
J.
,
Rounsevell
,
R.
,
Huang
,
J. N.
,
Moake
,
J.
,
Ware
,
R. E.
,
Fletcher
,
D. A.
, and
Lam
,
W. A.
,
2012
, “
In Vitro Modeling of the Microvascular Occlusion and Thrombosis That Occur in Hematologic Diseases Using Microfluidic Technology
,”
J. Clin. Invest.
,
122
(
1
), pp.
408
418
.
89.
Jeon
,
J. S.
,
Bersini
,
S.
,
Gilardi
,
M.
,
Dubini
,
G.
,
Charest
,
J. L.
,
Moretti
,
M.
, and
Kamm
,
R. D.
,
2015
, “
Human 3D Vascularized Organotypic Microfluidic Assays to Study Breast Cancer Cell Extravasation
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
1
), pp.
214
219
.
90.
Skommer
,
J.
, and
Wlodkowic
,
D.
,
2015
, “
Successes and Future Outlook for Microfluidics-Based Cardiovascular Drug Discovery
,”
Expert Opin. Drug Discovery
,
10
(
3
), pp.
231
244
.
91.
Chang
,
W. G.
,
Andrejecsk
,
J. W.
,
Kluger
,
M. S.
,
Saltzman
,
W. M.
, and
Pober
,
J. S.
,
2013
, “
Pericytes Modulate Endothelial Sprouting
,”
Cardiovasc. Res.
,
100
(
3
), pp.
492
500
.
92.
Stratman
,
A. N.
,
Schwindt
,
A. E.
,
Malotte
,
K. M.
, and
Davis
,
G. E.
,
2010
, “
Endothelial-Derived PDGF-BB and HB-EGF Coordinately Regulate Pericyte Recruitment During Vasculogenic Tube Assembly and Stabilization
,”
Blood
,
116
(
22
), pp.
4720
4730
.
93.
Stratman
,
A. N.
,
Malotte
,
K. M.
,
Mahan
,
R. D.
,
Davis
,
M. J.
, and
Davis
,
G. E.
,
2009
, “
Pericyte Recruitment During Vasculogenic Tube Assembly Stimulates Endothelial Basement Membrane Matrix Formation
,”
Blood
,
114
(
24
), pp.
5091
5101
.
94.
Waters
,
J. P.
,
Kluger
,
M. S.
,
Graham
,
M.
,
Chang
,
W. G.
,
Bradley
,
J. R.
, and
Pober
,
J. S.
,
2013
, “
In Vitro Self-Assembly of Human Pericyte-Supported Endothelial Microvessels in Three-Dimensional Coculture: A Simple Model for Interrogating Endothelial-Pericyte Interactions
,”
J. Vasc. Res.
,
50
(
4
), pp.
324
331
.
95.
Kim
,
J.
,
Chung
,
M.
,
Kim
,
S.
,
Jo
,
D. H.
,
Kim
,
J. H.
, and
Jeon
,
N. L.
,
2015
, “
Engineering of a Biomimetic Pericyte-Covered 3D Microvascular Network
,”
PLoS One
,
10
(
7
), pp.
1
15
.
96.
Van der Meer
,
A. D.
,
Orlova
,
V. V.
,
ten Dijke
,
P.
,
van den Berg
,
A.
, and
Mummery
,
C. L.
,
2013
, “
Three-Dimensional Co-Cultures of Human Endothelial Cells and Embryonic Stem Cell-Derived Pericytes Inside a Microfluidic Device
,”
Lab Chip
,
13
(
18
), pp.
3562
3568
.
97.
Katt
,
M. E.
,
Placone
,
A. L.
,
Wong
,
A. D.
,
Xu
,
Z. S.
, and
Searson
,
P. C.
,
2016
, “
In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform
,”
Front. Bioeng. Biotechnol.
,
4
(12), pp.
1
14
.
98.
Carmeliet
,
P.
, and
Jain
,
R. K.
,
2000
, “
Angiogenesis in Cancer and Other Diseases
,”
Nature
,
407
(
6801
), pp.
249
257
.
99.
Wirtz
,
D.
,
Konstantopoulos
,
K.
, and
Searson
,
P. C.
,
2011
, “
The Physics of Cancer: The Role of Physical Interactions and Mechanical Forces in Metastasis
,”
Nat. Rev. Cancer
,
11
(
7
), pp.
512
522
.
100.
Wong
,
A. D.
, and
Searson
,
P. C.
,
2014
, “
Live-Cell Imaging of Invasion and Intravasation in an Artificial Microvessel Platform
,”
Cancer Res.
,
74
(
17
), pp.
4937
4945
.
101.
Buchanan
,
C. F.
,
Verbridge
,
S. S.
,
Vlachos
,
P. P.
, and
Rylander
,
M. N.
,
2014
, “
Flow Shear Stress Regulates Endothelial Barrier Function and Expression of Angiogenic Factors in a 3D Microfluidic Tumor Vascular Model
,”
Cell Adhes. Migr.
,
8
(
5
), pp.
517
524
.
102.
Chen
,
M. B.
,
Whisler
,
J. A.
,
Jeon
,
J. S.
, and
Kamm
,
R. D.
,
2013
, “
Mechanisms of Tumor Cell Extravasation in an In Vitro Microvascular Network Platform
,”
Integr. Biol. (Cambridge)
,
5
(
10
), pp.
1262
1271
.
103.
Zheng
,
F.
,
Fu
,
F.
,
Cheng
,
Y.
,
Wang
,
C.
,
Zhao
,
Y.
, and
Gu
,
Z.
,
2016
, “
Organ-on-a-Chip Systems: Microengineering to Biomimic Living Systems
,”
Small
,
12
(17), pp.
2253
2282
.
104.
Huh
,
D.
,
Matthews
,
B. D.
,
Mammoto
,
A.
,
Montoya-Zavala
,
M.
,
Hsin
,
H. Y.
, and
Ingber
,
D. E.
,
2010
, “
Reconstituting Organ-Level Lung Functions on a Chip
,”
Science
,
328
(
5986
), pp.
1662
1668
.
105.
Chiu
,
L. L. Y.
,
Montgomery
,
M.
,
Liang
,
Y.
,
Liu
,
H.
, and
Radisic
,
M.
,
2012
, “
Perfusable Branching Microvessel Bed for Vascularization of Engineered Tissues
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
50
), pp.
E3414
3423
.
106.
Brown
,
J. A.
,
Pensabene
,
V.
,
Markov
,
D. A.
,
Allwardt
,
V.
,
Neely
,
M. D.
,
Shi
,
M.
,
Britt
,
C. M.
,
Hoilett
,
O. S.
,
Yang
,
Q.
,
Brewer
,
B. M.
,
Samson
,
P. C.
,
McCawley
,
L. J.
,
May
,
J. M.
,
Webb
,
D. J.
,
Li
,
D.
,
Bowman
,
A. B.
,
Reiserer
,
R. S.
, and
Wikswo
,
J. P.
,
2015
, “
Recreating Blood-Brain Barrier Physiology and Structure on Chip: A Novel Neurovascular Microfluidic Bioreactor
,”
Biomicrofluidics
,
9
(
5
), pp.
1
15
.
107.
Ligresti
,
G.
,
Nagao
,
R. J.
,
Xue
,
J.
,
Choi
,
Y. J.
,
Xu
,
J.
,
Ren
,
S.
,
Aburatani
,
T.
,
Anderson
,
S. K.
,
MacDonald
,
J. W.
,
Bammler
,
T. K.
,
Schwartz
,
S. M.
,
Muczynski
,
K. A.
,
Duffield
,
J. S.
,
Himmelfarb
,
J.
, and
Zheng
,
Y.
,
2015
, “
A Novel Three-Dimensional Human Peritubular Microvascular System
,”
J. Am. Soc. Nephrol.
,
27
(8), pp.
2370
2381
.
108.
Williamson
,
A.
,
Singh
,
S.
,
Fernekorn
,
U.
, and
Schober
,
A.
,
2013
, “
The Future of the Patient-Specific Body-on-a-Chip
,”
Lab Chip
,
13
(
18
), pp.
3471
3480
.
You do not currently have access to this content.