Tendons are highly anisotropic and also viscoelastic. For understanding and modeling their 3D deformation, information is needed on their viscoelastic response under off-axis loading. A study was made, therefore, of creep and recovery of bovine digital extensor tendons when subjected to transverse compressive stress of up to ca. 100 kPa. Preconditioned tendons were compression tested between glass plates at increasing creep loads. The creep response was anomalous: the relative rate of creep reduced with the increasing stress. Over each ca. 100 s creep period, the transverse creep deformation of each tendon obeyed a power law dependence on time, with the power law exponent falling from ca. 0.18 to an asymptote of ca. 0.058 with the increasing stress. A possible explanation is stress-driven dehydration, as suggested previously for the similar anomalous behavior of ligaments. Recovery after removal of each creep load was also anomalous. Relative residual strain reduced with the increasing creep stress, but this is explicable in terms of the reducing relative rate of creep. When allowance was made for some adhesion occurring naturally between tendon and the glass plates, the results for a given load were consistent with creep and recovery being related through the Boltzmann superposition principle (BSP). The tendon tissue acted as a pressure-sensitive adhesive (PSA) in contact with the glass plates: explicable in terms of the low transverse shear modulus of the tendons.

References

References
1.
Almekinders
,
L. C.
,
Weinhold
,
P. S.
, and
Maffulli
,
N.
,
2003
, “
Compression Etiology in Tendinopathy
,”
Clin. Sports Med.
,
22
(
4
), pp.
703
710
.
2.
Docking
,
S.
,
Samiric
,
T.
,
Scase
,
E.
,
Purdam
,
C.
, and
Cook
,
J.
,
2013
, “
Relationship Between Compressive Loading and ECM Changes in Tendons
,”
Muscles, Ligaments Tendons J.
,
3
(
1
), pp.
7
11
.
3.
Cook
,
J. L.
, and
Purdam
,
C.
,
2013
, “
Is Compressive Load a Factor in the Development of Tendinopathy?
,”
Br. J. Sports Med.
,
46
(
3
), pp.
163
168
.
4.
LaPrade
,
C. M.
,
Civitarese
,
D. M.
,
Rasmussen
,
M. T.
, and
LaPrade
,
R. F.
,
2015
, “
Emerging Updates on the Posterior Cruciate Ligament: A Review of the Current Literature
,”
Am. J. Sports Med.
,
43
(
12
), pp.
3077
3092
.
5.
Middleton
,
K. K.
,
Hamilton
,
T.
,
Irrgang
,
J. J.
,
Karlsson
,
J.
,
Harner
,
C. D.
, and
Fu
,
F. H.
,
2014
, “
Anatomic Anterior Cruciate Ligament (ACL) Reconstruction: A Global Perspective. Part 1
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
22
(
7
), pp.
1467
1482
.
6.
Rigby
,
B. J.
,
Hirai
,
N.
,
Spikes
,
J. D.
, and
Eyring
,
H.
,
1959
, “
The Mechanical Properties of Rat Tail Tendon
,”
J. Gen. Physiol.
,
43
(
2
), pp.
265
283
.
7.
Cohen
,
R. E.
,
Hooley
,
C. J.
, and
McCrum
,
N. G.
,
1976
, “
Viscoelastic Creep of Collagenous Tissue
,”
J. Biomech.
,
9
(
4
), pp.
175
184
.
8.
Hooley
,
C. J.
,
McCrum
,
N. G.
, and
Cohen
,
R. E.
,
1980
, “
The Viscoelastic Deformation of Tendon
,”
J. Biomech.
,
13
(
6
), pp.
521
528
.
9.
Johnson
,
G. A.
,
Tramaglini
,
D. M.
,
Levine
,
R. E.
,
Ohno
,
K.
,
Choi
,
N.-Y.
, and
Woo
,
S. L.-Y.
,
1994
, “
Tensile and Viscoelastic Properties of Human Patella Tendon
,”
J. Bone Jt. Surg.
,
12
(
6
), pp.
796
803
.
10.
Duenwald
,
S. E.
,
Vanderby
,
R.
, and
Lakes
,
R. S.
,
2009
, “
Viscoelastic Relaxation and Recovery of Tendon
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1131
1140
.
11.
Duenwald
,
S. E.
,
Vanderby
,
R.
, and
Lakes
,
R. S.
,
2010
, “
Stress Relaxation and Recovery in Tendon and Ligament: Experiment and Modelling
,”
Biorheology
,
47
(
1
), pp.
1
14
.
12.
Dourte
,
L. M.
,
Pathmanathan
,
L.
,
Jawad
,
A. F.
,
Iozzo
,
R. V.
,
Mienaltowski
,
M. J.
,
Birk
,
D. E.
, and
Soslowsky
,
L. J.
,
2012
, “
Influence of Decorin on the Mechanical, Compositional, and Structural Properties of the Mouse Patellar Tendon
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031005
.
13.
Davis
,
F. M.
, and
De Vita
,
R.
,
2012
, “
A Nonlinear Constitutive Model for Stress Relaxation in Ligaments and Tendons
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2541
2550
.
14.
LaCroix
,
A. S.
,
Duenwald-Kuehl
,
S. E.
,
Brickson
,
S.
,
Akins
,
T. L.
,
Diffee
,
G.
,
Aiken
,
J.
,
Vanderby
,
R.
, and
Lakes
,
R. S.
,
2013
, “
The Effect of Age and Exercise on the Viscoelastic Properties of Rat Tail Tendon
,”
Ann. Biomed. Eng.
,
41
(
6
), pp.
1120
1128
.
15.
Ikeda
,
J.
,
Zhao
,
C.
,
Chen
,
Q.
,
Thoreson
,
A. R.
,
An
,
K.-N.
, and
Amadio
,
P. C.
,
2011
, “
Compressive Properties of cd-HA-Gelatin Modified Intrasynovial Tendon Allograft in Canine Model In Vivo
,”
J. Biomech.
,
44
(
9
), pp.
1793
1796
.
16.
Lee
,
S.-B.
,
Nakajima
,
T.
,
Luo
,
Z.-P.
,
Zobitz
,
M. E.
,
Chang
,
Y.-W.
, and
An
,
K.-N.
,
2000
, “
The Bursal and Articular Sides of the Supraspinatus Tendon Have a Different Compressive Stiffness
,”
Clin. Biomech.
,
15
(
4
), pp.
241
247
.
17.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
,
Jawa
,
A.
, and
Elliott
,
D. M.
,
2003
, “
Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
726
731
.
18.
Williams
,
L. N.
,
Elder
,
S. H.
,
Bouvard
,
J. L.
, and
Horstemeyer
,
M. E.
,
2008
, “
The Anisotropic Compressive Mechanical Properties of the Rabbit Patellar Tendon
,”
Biorheology
,
45
(
5
), pp.
577
586
.
19.
Main
,
E. K.
,
Goetz
,
J. E.
,
Rudert
,
M. J.
,
Goreham-Voss
,
C. M.
, and
Brown
,
T. D.
,
2011
, “
Apparent Transverse Compressive Material Properties of the Digital Flexor Tendons and the Median Nerve in the Carpal Tunnel
,”
J. Biomech.
,
44
(
5
), pp.
863
868
.
20.
Salisbury
,
S. T. S.
,
Buckley
,
C. P.
, and
Zavatsky
,
A. B.
,
2016
, “
Transverse Compression of Tendons
,”
ASME J. Biomech. Eng.
,
138
(
4
), p.
041002
.
21.
Salisbury
,
S. T. S.
,
Buckley
,
C. P.
, and
Zavatsky
,
A. B.
,
2008
, “
Image-Based Non-Contact Method to Measure Cross-Sectional Areas and Shapes of Tendons and Ligaments
,”
Meas. Sci. Technol.
,
19
(
4
), p.
045705
.
22.
Chimich
,
D.
,
Shrive
,
N.
,
Frank
,
C.
,
Marchuk
,
L.
, and
Bray
,
R.
,
1992
, “
Water Content Alters Viscoelastic Behaviour of the Normal Adolescent Rabbit Medial Collateral Ligament
,”
J. Biomech.
,
25
(
8
), pp.
831
837
.
23.
Salisbury
,
S. T. S.
,
2008
, “The Mechanical Properties of Tendon,”
D.Phil. thesis
, University of Oxford, Oxford, UK.
24.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
2nd ed.
,
Springer
,
New York
.
25.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
,
R.
,
2001
, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
,
29
(
10
), pp.
908
914
.
26.
Elliott
,
D. M.
,
Robinson
,
P. S.
,
Gimbel
,
J. A.
,
Sarver
,
J. J.
,
Abboud
,
J. A.
,
Iozzo
,
R. V.
, and
Soslowsky
,
L. J.
,
2003
, “
Effect of Altered Matrix Proteins on Quasilinear Viscoelastic Properties in Transgenic Mouse Tail Tendons
,”
Ann. Biomed. Eng.
,
31
(
5
), pp.
599
605
.
27.
Buckley
,
C. P.
, and
Jones
,
D. C.
,
1995
, “
Glass-Rubber Constitutive Model for Amorphous Polymers Near the Glass Transition
,”
Polymer
,
36
(
17
), pp.
3301
3312
.
28.
Hingorami
,
R. V.
,
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Escarcega
,
A.
, and
Vanderby
,
R.
,
2004
, “
Nonlinear Viscoelasticity in Rabbit Medial Collateral Ligament
,”
Ann. Biomed. Eng.
,
32
(
2
), pp.
306
312
.
29.
Bonifasi-Lista
,
C.
,
Small
,
S. P.
, and
Weiss
,
J. A.
,
2005
, “
Viscoelastic Properties of the Human Medial Collateral Ligament Under Longitudinal, Transverse and Shear Loading
,”
J. Orthop. Res.
,
23
(
1
), pp.
67
76
.
30.
Hannafin
,
J. A.
, and
Arnoczky
,
S. P.
,
1994
, “
Effect of Cyclic and Static Tensile Loading on Water Content and Solute Diffusion in Canine Flexor Tendons: An In Vitro Study
,”
J. Orthop. Res.
,
12
(
3
), pp.
350
356
.
31.
Han
,
S.
,
Gemmell
,
S. J.
,
Helmer
,
K. G.
,
Grigg
,
P.
,
Wellen
,
J. W.
,
Hoffman
,
A. H.
, and
Sotak
,
C. H.
,
2000
, “
Changes in ADC Caused by Tensile Loading of Rabbit Achilles Tendon: Evidence for Water Transport
,”
J. Magn. Reson.
,
144
(
2
), pp.
217
227
.
32.
Haut
,
T. L.
, and
Haut
,
R. C.
,
1997
, “
The State of Tissue Hydration Determines the Strain-Rate-Sensitive Stiffness of Human Patellar Tendon
,”
J. Biomech.
,
30
(
1
), pp.
79
81
.
33.
Nordin
,
M.
,
Lorenz
,
T.
, and
Campello
,
M.
,
2001
, “
Biomechanics of Ligaments and Tendons
,”
Basic Biomechanics of the Musculoskeletal System
,
3rd ed.
,
M.
Nordin
and
V. H.
Frankel
, eds.,
Lippincott Williams & Wilkins
,
Philadelphia, PA
, pp.
102
125
.
34.
Wellen
,
J.
,
Helmer
,
K. G.
,
Grigg
,
P.
, and
Sotak
,
C. H.
,
2004
, “
Application of Porous-Media Theory to the Investigation of Water ADC Changes in Rabbit Achilles Tendon Caused by Tensile Loading
,”
J. Magn. Reson.
,
170
(
1
), pp.
49
55
.
35.
Wellen
,
J.
,
Helmer
,
K. G.
,
Grigg
,
P.
, and
Sotak
,
C. H.
,
2005
, “
Spatial Characterization of T1 and T2 Relaxation Times and the Water Apparent Diffusion Coefficient in Rabbit Achilles Tendon Subjected to Tensile Loading
,”
Magn. Reson. Med.
,
53
(
3
), pp.
535
544
.
36.
Ross
,
M. H.
, and
Pawlina
,
W.
,
2011
, “
Connective Tissues
,”
Histology: A Text and Atlas
,
6th ed.
,
Lippincott Williams & Wilkins
,
Philadelphia, PA
, pp.
158
197
.
37.
Creton
,
C.
, and
Leibler
,
L.
,
1996
, “
How Does Tack Depend on Time of Contact and Contact Pressure?
,”
J. Polym. Sci., Part B: Polym. Phys.
,
34
(
3
), pp.
545
554
.
You do not currently have access to this content.