Biofidelity response corridors developed from post-mortem human subjects are commonly used in the design and validation of anthropomorphic test devices and computational human body models (HBMs). Typically, corridors are derived from a diverse pool of biomechanical data and later normalized to a target body habitus. The objective of this study was to use morphed computational HBMs to compare the ability of various scaling techniques to scale response data from a reference to a target anthropometry. HBMs are ideally suited for this type of study since they uphold the assumptions of equal density and modulus that are implicit in scaling method development. In total, six scaling procedures were evaluated, four from the literature (equal-stress equal-velocity, ESEV, and three variations of impulse momentum) and two which are introduced in the paper (ESEV using a ratio of effective masses, ESEV-EffMass, and a kinetic energy approach). In total, 24 simulations were performed, representing both pendulum and full body impacts for three representative HBMs. These simulations were quantitatively compared using the International Organization for Standardization (ISO) ISO-TS18571 standard. Based on these results, ESEV-EffMass achieved the highest overall similarity score (indicating that it is most proficient at scaling a reference response to a target). Additionally, ESEV was found to perform poorly for two degree-of-freedom (DOF) systems. However, the results also indicated that no single technique was clearly the most appropriate for all scenarios.

References

References
1.
Moorhouse
,
K.
,
2013
, “
An Improved Normalization Methodology for Developing Mean Human Response Curves
,”
23rd International Conference of Enhanced Safety of Vehicles
, Seoul, Korea, May 27–30, Paper No. 13-0192.
2.
Yang
,
K. H.
,
Hu
,
J.
,
White
,
N. A.
,
King
,
A. I.
,
Chou
,
C. C.
, and
Prasad
,
P.
,
2006
, “
Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference
,”
Stapp Car Crash J.
,
50
, pp.
429
490
.
3.
Hayes
,
A. R.
,
Vavalle
,
N. A.
,
Moreno
,
D. P.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2014
, “
Validation of Simulated Chestband Data in Frontal and Lateral Loading Using a Human Body Finite Element Model
,”
Traffic Inj. Prev.
,
15
(
2
), pp.
181
186
.
4.
Iwamoto
,
M.
,
Nakahira
,
Y.
,
Tamura
,
A.
,
Kimpara
,
H.
,
Watanabe
,
I.
, and
Miki
,
K.
,
2007
, “
Development of Advanced Human Models in THUMS
,”
6th European LS-Dyna Users' Conference
, Gothenburg, Sweden, May 28–30, pp.
47
56
.
5.
Li
,
Z.
,
Kindig
,
M. W.
,
Kerrigan
,
J. R.
,
Untaroiu
,
C. D.
,
Subit
,
D.
,
Crandall
,
J. R.
, and
Kent
,
R. W.
,
2010
, “
Rib Fractures Under Anterior-Posterior Dynamic Loads: Experimental and Finite-Element Study
,”
J. Biomech.
,
43
(
2
), pp.
228
234
.
6.
Shin
,
J.
,
Yue
,
N.
, and
Untaroiu
,
C. D.
,
2012
, “
A Finite Element Model of the Foot and Ankle for Automotive Impact Applications
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2519
2531
.
7.
DeWit
,
J. A.
, and
Cronin
,
D. S.
,
2012
, “
Cervical Spine Segment Finite Element Model for Traumatic Injury Prediction
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
138
150
.
8.
Soni
,
A.
, and
Beillas
,
P.
,
2015
, “
Modelling Hollow Organs for Impact Conditions: A Simplified Case Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
7
), pp.
730
739
.
9.
Yoganandan
,
N.
,
Arun
,
M. W.
, and
Pintar
,
F. A.
,
2014
, “
Normalizing and Scaling of Data to Derive Human Response Corridors From Impact Tests
,”
J. Biomech.
,
47
(
8
), pp.
1749
1756
.
10.
Vavalle
,
N. A.
,
Schoell
,
S. L.
,
Weaver
,
A. A.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2014
, “
Application of Radial Basis Function Methods in the Development of a 95th Percentile Male Seated FEA Model
,”
Stapp Car Crash J.
,
58
, pp.
361
384
.
11.
Eppinger
,
R. H.
,
1976
, “
Prediction of Thoracic Injuries Using Measurable Experimental Parameters
,”
Sixth International Technical Conference on the Enhanced Safety of Vehicles (ESV)
, Washington, DC, Oct. 12–15, pp.
770
780
.
12.
Mertz
,
H. J.
,
1984
, “
A Procedure for Normalizing Impact Response Data
,”
SAE
Technical Paper No. 840884.
13.
Davis
,
M. L.
,
Allen
,
B. C.
,
Geer
,
C. P.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2014
, “
A Multi-Modality Image Set for the Development of a 5th Percentile Female Finite Element Model
,”
International Research Council on Biomechanics of Injury
(
IRCOBI
), Berlin, Germany, Sept. 10–12, pp.
461
475
.
14.
Vavalle
,
N. A.
,
Moreno
,
D. P.
,
Rhyne
,
A. C.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2013
, “
Lateral Impact Validation of a Geometrically Accurate Full Body Finite Element Model for Blunt Injury Prediction
,”
Ann. Biomed. Eng.
,
41
(
3
), pp.
497
512
.
15.
Vavalle
,
N.
,
Davis
,
M.
,
Stitzel
,
J.
, and
Gayzik
,
F. S.
,
2015
, “
Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts
,”
Ann. Biomed. Eng.
,
43
(
9
), pp.
2163
2174
.
16.
Kroell
,
C. K.
,
Schneider
,
D. C.
, and
Nahum
,
A. M.
,
1974
, “
Impact Tolerance and Response of the Human Thorax II
,”
SAE
Technical Paper No. 741187.
17.
Hardy
,
W. N.
,
Schneider
,
L. W.
, and
Rouhana
,
S. W.
,
2001
, “
Abdominal Impact Response to Rigid-Bar, Seatbelt, and Airbag Loading
,”
Stapp Car Crash J.
,
45
, pp.
1
32
.
18.
Bouquet
,
R.
,
Ramet
,
M.
,
Bermond
,
F.
,
Caire
,
Y.
,
Talantikite
,
Y.
,
Robin
,
S.
, and
Voiglio
,
E.
,
1998
, “
Pelvis Human Response to Lateral Impact
,”
16th International Technical Conference on the Enhanced Safetfy of Vehicles
, Windsor, ON, Canada, May 31–June 4, pp.
1665
1686
.
19.
Stalnaker
,
R.
,
Tarrière
,
C.
,
Fayon
,
A.
,
Walfisch
,
G.
,
Balthazard
,
M.
,
Masset
,
J.
,
Got
,
C.
, and
Patel
,
A.
,
1979
, “
Modification of Part 572 Dummy for Lateral Impact According to Biomechanical Data
,”
Stapp Car Crash J.
,
23
, pp.
843
872
.
20.
Cavanaugh
,
J. M.
,
Zhu
,
Y.
,
Huang
,
Y.
, and
King
,
A. I.
,
1993
, “
Injury and Response of the Thorax in Side Impact Cadaveric Tests
,”
SAE
Technical Paper No. 933127.
21.
Cavanaugh
,
J. M.
,
Walilko
,
T. J.
,
Malhotra
,
A.
,
Zhu
,
Y.
, and
King
,
A. I.
,
1990
, “
Biomechanical Response and Injury Tolerance of the Pelvis in Twelve Sled Side Impacts
,”
SAE
Technical Paper No. 902305.
22.
Viano
,
D. C.
,
1989
, “
Biomechanical Responses and Injuries in Blunt Lateral Impact
,”
Stapp Car Crash J.
,
33
, pp.
113
142
.
23.
Zhan
,
Z.
,
Fu
,
Y.
, and
Yang
,
R.-J.
,
2011
, “
Enhanced Error Assessment of Response Time Histories (EEARTH) Metric and Calibration Process
,”
SAE
Technical Paper 2011-01-0245.
24.
Davis
,
M. L.
,
Vavalle
,
N. A.
, and
Gayzik
,
F. S.
,
2015
, “
An Evaluation of Mass-Normalization Using 50th and 95th Percentile Human Body Finite Element Models in Frontal Crash
,”
International Research Council on Biomechanics of Injury
(
IRCOBI
), Lyon, France, Sept. 9–11, Paper No. IRC-15-68, pp.
608
621
.
You do not currently have access to this content.