Ureteral peristalsis can be considered as a series of waves on the ureteral wall, which transfers the urine along the ureter toward the bladder. The stones that form in the kidney and migrate to the ureter can create a substantial health problem due to the pain caused by interaction of the ureteral walls and stones during the peristaltic motion. Three-dimensional (3D) computational fluid dynamics (CFD) simulations were carried out using the commercial code ansys fluent to solve for the peristaltic movement of the ureter, with and without stones. The effect of stone size was considered through the investigation of varying obstructions of 5%, 15%, and 35% for fixed spherical stone shape. Also, an understanding of the effect of stone shape was obtained through separate CFD calculations of the peristaltic ureter with three different types of stones, a sphere, a cube, and a star, all at a fixed obstruction percentage of 15%. Velocity vectors, mass flow rates, pressure gradients, and wall shear stresses were analyzed along one bolus of urine during peristalsis of the ureteral wall to study the various effects. It was found that the increase in obstruction increased the backflow, pressure gradients, and wall shear stresses proximal to the stone. On the other hand, with regard to the stone shape study, while the cube-shaped stones resulted in the largest backflow, the star-shaped stone showed highest pressure gradient magnitudes. Interestingly, the change in stone shape did not have a significant effect on the wall shear stress at the obstruction level studied here.

References

References
1.
Scales
,
C. D.
, Jr.
,
Smith
,
A. C.
,
Hanley
,
J. M.
, and
Saigal
,
C. S.
,
2012
, “
Prevalence of Kidney Stones in the United States
,”
Eur. Urol.
,
62
(
1
), pp.
160
165
.
2.
Pak
,
C. Y.
,
1998
, “
Kidney Stones
,”
Lancet
,
351
(
9118
), pp.
1797
1801
.
3.
Constantinou
,
C. E.
,
1974
, “
Renal Pelvic Pacemaker Control of Ureteral Peristaltic Rate
,”
Am. J. Physiol.—Legacy Content
,
226
(
6
), pp.
1413
1419
.
4.
Fung
,
Y. C.
,
1971
, “
Peristaltic Pumping: A Bioengineering Model
,”
Urodynamics: Hydrodynamics of the Ureter and Renal Pelvis
,
S.
Boyarsky
,
G. W.
Gottschalk
,
E. A.
Tanagho
, and
P. D.
Zimskind
, eds.,
Academic Press
,
New York, NY
, pp.
189
198
.
5.
Brasseur
,
J. G.
,
1987
, “
A Fluid Mechanical Perspective on Esophageal Bolus Transport
,”
Dysphagia
,
2
(
1
), pp.
32
39
.
6.
Anagnostou
,
T.
, and
Tolley
,
D.
,
2004
, “
Management of Ureteric Stones
,”
Eur. Urol.
,
45
(
6
), pp.
714
721
.
7.
Misra
,
J. C.
, and
Pandey
,
S. K.
,
2001
, “
A Mathematical Model for Oesophageal Swallowing of a Food-Bolus
,”
Math. Comput. Modell.
,
33
(
8
), pp.
997
1009
.
8.
Fung
,
Y. C.
, and
Yih
,
C. S.
,
1968
, “
Peristaltic Transport
,”
ASME J. Appl. Mech.
,
35
(
4
), pp.
669
675
.
9.
Fauci
,
L. J.
, and
Dillon
,
R.
,
2006
, “
Biofluidmechanics of Reproduction
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
371
394
.
10.
Shapiro
,
A. H.
,
Jaffrin
,
M. Y.
, and
Weinberg
,
S. L.
,
1969
, “
Peristaltic Pumping With Long Wavelengths at Low Reynolds Number
,”
J. Fluid Mech.
,
37
(
4
), pp.
799
825
.
11.
Pak
,
C. Y. C.
,
Poindexter
,
J. R.
,
Adams-Huet
,
B.
, and
Pearle
,
M. S.
,
2003
, “
Predictive Value of Kidney Stone Composition in the Detection of Metabolic Abnormalities
,”
Am. J. Med.
,
115
(
1
), pp.
26
32
.
12.
Fung
,
Y.-C.
,
2013
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
13.
Gregersen
,
H.
, and
Hansen
,
I.
,
1999
, “
Morphometry and Residual Strain in Porcine Ureter
,”
Scand. J. Urol. Nephrol.
,
33
(
1
), pp.
10
16
.
14.
Knudsen
,
L.
,
Gregersen
,
H.
,
Eika
,
B.
, and
Frøkiær
,
J.
,
1994
, “
Elastic Wall Properties and Collagen Content in the Ureter: An Experimental Study in Pigs
,”
Neurourol. Urodyn.
,
13
(
5
), pp.
597
606
.
15.
Yin
,
F. C.
, and
Fung
,
Y. C.
,
1971
, “
Mechanical Properties of Isolated Mammalian Ureteral Segments
,”
Am. J. Physiol.–Legacy Content
,
221
(
5
), pp.
1484
1493
.
16.
Burns
,
J. C.
, and
Parkes
,
T.
,
1967
, “
Peristaltic Motion
,”
J. Fluid Mech.
,
29
(
4
), pp.
731
743
.
17.
Zien
,
T.-F.
, and
Ostrach
,
S.
,
1970
, “
A Long Wave Approximation to Peristaltic Motion
,”
J. Biomech.
,
3
(
1
), pp.
63
75
.
18.
Vahidi
,
B.
, and
Fatouraee
,
N.
,
2012
, “
A Biomechanical Simulation of Ureteral Flow During Peristalsis Using Intraluminal Morphometric Data
,”
J. Theor. Biol.
,
298
, pp.
42
50
.
19.
Takabatake
,
S.
, and
Ayukawa
,
K.
,
1982
, “
Numerical Study of Two-Dimensional Peristaltic Flows
,”
J. Fluid Mech.
,
122
, pp.
439
465
.
20.
Hung
,
T.-K.
, and
Brown
,
T. D.
,
1976
, “
Solid-Particle Motion in Two-Dimensional Peristaltic Flows
,”
J. Fluid Mech.
,
73
(
1
), pp.
77
96
.
21.
Connington
,
K.
,
Kang
,
Q.
,
Viswanathan
,
H.
,
Abdel-Fattah
,
A.
, and
Chen
,
S.
,
2009
, “
Peristaltic Particle Transport Using the Lattice Boltzmann Method
,”
Phys. Fluids (1994-Present)
,
21
(
5
), pp.
53
58
.
22.
Chrispell
,
J.
, and
Fauci
,
L.
,
2011
, “
Peristaltic Pumping of Solid Particles Immersed in a Viscoelastic Fluid
,”
Math. Modell. Nat. Phenom.
,
6
(
5
), pp.
67
83
.
23.
Lozano
,
J. N. J.
,
2009
, “
Peristaltic Flow With Application to Ureteral Biomechanics
,”
Ph.D. thesis
, University of Notre Dame, Notre Dame, IN.
24.
Walker
,
S. W.
, and
Shelley
,
M. J.
,
2010
, “
Shape Optimization of Peristaltic Pumping
,”
J. Comput. Phys.
,
229
(
4
), pp.
1260
1291
.
25.
Manton
,
M. J.
,
1975
, “
Long-Wavelength Peristaltic Pumping at Low Reynolds Number
,”
J. Fluid Mech.
,
68
(
3
), pp.
467
476
.
26.
Teran
,
J.
,
Fauci
,
L.
, and
Shelley
,
M.
,
2008
, “
Peristaltic Pumping and Irreversibility of a Stokesian Viscoelastic Fluid
,”
Phys. Fluids (1994-Present)
,
20
(
7
), pp.
1
11
.
27.
Bushinsky
,
D.
,
1998
, “
Nephrolithiasis
,”
J. Am. Soc. Nephrol.
,
9
(
5
), pp.
917
924
.
28.
Grasso
,
M.
,
2000
, “
Ureteropyeloscopic Treatment of Ureteral and Intrarenal Calculi
,”
Urol. Clin. North Am.
,
27
(
4
), pp.
623
631
.
29.
Woodburne
,
R.
, and
Lapides
,
J.
,
1972
, “
The Ureteral Lumen During Peristalsis
,”
Am. J. Anat.
,
1333
(3), pp.
255
258
.
30.
Weinberg
,
S. L.
,
1974
, “
Ureteral Function. I. Simultaneous Monitoring of Ureteral Peristalsis
,”
Invest. Urol.
,
12
(
2
), p.
103
.
31.
Butler
,
M.
,
Power
,
R. E.
,
Thornhill
,
J. A.
,
Ahmad
,
I.
,
McLornan
,
I.
,
McDermott
,
T.
, and
Grainger
,
R.
,
2004
, “
An Audit of 2273 Ureteroscopies—A Focus on Intraoperative Complications to Justify Proactive Management of Ureteric Calculi
,”
Surgeon
,
2
(
1
), pp.
42
46
.
32.
Schuster
,
T. G.
,
Hollenbeck
,
B. K.
,
Faerber
,
G. J.
, and
Wolf
,
J. S.
,
2001
, “
Complications of Ureteroscopy: Analysis of Predictive Factors
,”
J. Urol.
,
166
(
2
), pp.
538
540
.
33.
Geavlete
,
P.
,
Georgescu
,
D.
,
Nita
,
G.
,
Mirciulescu
,
V.
, and
Cauni
,
V.
,
2006
, “
Complications of 2735 Retrograde Semi Rigid Ureteroscopy Procedures: A Single-Center Experience
,”
J. Endourology
,
20
(
3
), pp.
179
185
.
34.
Ge
,
C.
,
Li
,
Q.
,
Wang
,
L.
,
Jin
,
F.
,
Li
,
Y.
,
Wan
,
J.
,
Lan
,
W.
, and
Liang
,
P.
,
2011
, “
Management of Complete Ureteral Avulsion and Literature Review: A Report on Four Cases
,”
J. Endourology
,
25
(
2
), pp.
179
185
.
35.
Najafi
,
Z.
,
Tieu
,
T.
,
Mahajan
,
A.
, and
Schwartz
,
B.
,
2015
, “
A Smart Kidney Stone Basket With Force Feedback
,”
J. Urol.
,
193
(
4S
), pp.
889
890
.
36.
Najafi
,
Z.
,
Tieu
,
T.
,
Mahajan
,
A.
, and
Schwartz
,
B.
,
2015
, “
Significance of Extraction Forces in Kidney Stone Basketing
,”
J. Endourology
,
29
(
11
), pp.
1270
1275
.
37.
Najafi
,
Z.
,
Tieu
,
T.
,
Mahajan
,
A.
, and
Schwartz
,
B.
,
2016
, “
Design of a New Stone Extraction Device With Force Feedback
,”
Int. J. Biomed. Eng. Technol.
,
20
(
2
), pp.
166
178
.
38.
Griffiths
,
D. J.
,
Constantinou
,
C. E.
,
Mortensen
,
J.
, and
Djurhuus
,
J. C.
,
1987
, “
Dynamics of the Upper Urinary Tract: II. The Effect of Variations of Peristaltic Frequency and Bladder Pressure on Pyeloureteral Pressure/Flow Relations
,”
Phys. Med. Biol.
,
32
(
7
), p.
823
.
You do not currently have access to this content.