Coronary heart disease is a leading cause of death among Americans for which coronary artery bypass graft (CABG) surgery is a standard surgical treatment. The success of CABG surgery is impaired by a compliance mismatch between vascular grafts and native vessels. Tissue engineered vascular grafts (TEVGs) have the potential to be compliance matched and thereby reduce the risk of graft failure. Glutaraldehyde (GLUT) vapor-crosslinked gelatin/fibrinogen constructs were fabricated and mechanically tested in a previous study by our research group at 2, 8, and 24 hrs of GLUT vapor exposure. The current study details a computational method that was developed to predict the material properties of our constructs for crosslinking times between 2 and 24 hrs by interpolating the 2, 8, and 24 hrs crosslinking time data. matlab and abaqus were used to determine the optimal combination of fabrication parameters to produce a compliance matched construct. The validity of the method was tested by creating a 16-hr crosslinked construct of 130 μm thickness and comparing its compliance to that predicted by the optimization algorithm. The predicted compliance of the 16-hr construct was 0.00059 mm Hg−1 while the experimentally determined compliance was 0.00065 mm Hg−1, a relative difference of 9.2%. Prior data in our laboratory has shown the compliance of the left anterior descending porcine coronary (LADC) artery to be 0.00071 ± 0.0003 mm Hg−1. Our optimization algorithm predicts that a 258-μm-thick construct that is GLUT vapor crosslinked for 8.1 hrs would match LADC compliance. This result is consistent with our previous work demonstrating that an 8-hr GLUT vapor crosslinked construct produces a compliance that is not significantly different from a porcine coronary LADC.

References

References
1.
Go
,
A. S.
,
Mozaffarian
,
D.
,
Roger
,
V. L.
,
Benjamin
,
E. J.
,
Berry
,
J. D.
,
Blaha
,
M. J.
,
Dai
,
S.
,
Ford
,
E. S.
,
Fox
,
C. S.
,
Franco
,
S.
,
Fullerton
,
H. J.
,
Gillespie
,
C.
,
Hailpern
,
S. M.
,
Heit
,
J. A.
,
Howard
,
V. J.
,
Huffman
,
M. D.
,
Judd
,
S. E.
,
Kissela
,
B. M.
,
Kittner
,
S. J.
,
Lackland
,
D. T.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Mackey
,
R. H.
,
Magid
,
D. J.
,
Marcus
,
G. M.
,
Marelli
,
A.
,
Matchar
,
D. B.
,
McGuire
,
D. K.
,
Mohler
,
E. R.
, 3rd
,
Moy
,
C. S.
,
Mussolino
,
M. E.
,
Neumar
,
R. W.
,
Nichol
,
G.
,
Pandey
,
D. K.
,
Paynter
,
N. P.
,
Reeves
,
M. J.
,
Sorlie
,
P. D.
,
Stein
,
J.
,
Towfighi
,
A.
,
Turan
,
T. N.
,
Virani
,
S. S.
,
Wong
,
N. D.
,
Woo
,
D.
, and
Turner
,
M. B.
,
2014
, “
Heart Disease and Stroke Statistics–2014 Update: A Report From the American Heart Association
,”
Circulation
,
129
(
3
), pp.
e28
e292
.
2.
Liu
,
T.
,
Liu
,
S.
,
Zhang
,
K.
,
Chen
,
J.
, and
Huang
,
N.
,
2014
, “
Endothelialization of Implanted Cardiovascular Biomaterial Surfaces: The Development From In Vitro to In Vivo
,”
J. Biomed. Mater. Res. Part A
,
102
(
10
), pp.
3754
3772
.
3.
Nezarati
,
R. M.
,
Eifert
,
M. B.
,
Dempsey
,
D. K.
, and
Cosgriff-Hernandez
,
E.
,
2015
, “
Electrospun Vascular Grafts With Improved Compliance Matching to Native Vessels
,”
J. Biomed. Mater. Res. Part B, Appl. Biomater.
,
103
(
2
), pp.
313
323
.
4.
Tamimi
,
E.
,
Ardila
,
D. C.
,
Haskett
,
D. G.
,
Doetschman
,
T.
,
Slepian
,
M. J.
,
Kellar
,
R. S.
, and
Vande Geest
,
J. P.
,
2015
, “
Biomechanical Comparison of Glutaraldehyde-Crosslinked Gelatin Fibrinogen Electrospun Scaffolds to Porcine Coronary Arteries
,”
ASME J. Biomech. Eng.
,
138
(
1
), p.
011001
.
5.
Boland
,
E. D.
,
Matthews
,
J. A.
,
Pawlowski
,
K. J.
,
Simpson
,
D. G.
,
Wnek
,
G. E.
, and
Bowlin
,
G. L.
,
2004
, “
Electrospinning Collagen and Elastin: Preliminary Vascular Tissue Engineering
,”
Front. Biosci.
,
9
(
2
), pp.
1422
1432
.
6.
MCClure
,
M. J.
,
Sell
,
S.
,
Simpson
,
D.
, and
Bowlin
,
G.
,
2009
, “
Electrospun Polydioxanone, Elastin, and Collagen Vascular Scaffolds: Uniaxial Cyclic Distension
,”
J. Eng. Fibers Fabr.
,
4
(
2
), pp.
18
25
.
7.
Wong
,
C. S.
,
Liu
,
X.
,
Xu
,
Z.
,
Lin
,
T.
, and
Wang
,
X.
,
2013
, “
Elastin and Collagen Enhances Electrospun Aligned Polyurethane as Scaffolds for Vascular Graft
,”
J. Mater. Sci.: Mater. Med.
,
24
(
8
), pp.
1865
1874
.
8.
Chung
,
J.
, and
Li
,
J. K.
,
2004
, “
Hemodynamic Simulation of Vascular Prosthesis Altering Pulse Wave Propagation
,” 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
IEMBS '04
), San Francisco, CA, Sept. 1–5, pp.
3678
3680
.
9.
Haskett
,
D. S. E.
,
Fouts
,
M.
,
Larson
,
D.
,
Azhar
,
M.
,
Utzinger
,
U.
, and
Vande Geest
,
J. P.
,
2012
, “
The Effects of Angiotensin II on the Coupled Microstructural and Biomechanical Response of C57BL/6 Mouse Aorta
,”
J. Biomech.
,
45
(
5
), pp.
722
729
.
10.
Haskett
,
D. G.
,
Azhar
,
M.
,
Utzinger
,
U.
, and
Vande Geest
,
J. P.
,
2013
, “
Progressive Alterations in Microstructural Organization and Biomechanical Response in the apoE Mouse Model of Aneurysm
,”
Biomatter
,
3
(
2
), pp.
e24648-24641
e24648-24610
.
11.
Haskett
,
D. G.
,
Doyle
,
J.
,
Gard
,
C.
,
Chen
,
H.
,
Ball
,
C.
,
Estabrook
,
M. A.
,
Encinas
,
A. C.
,
Dietz
,
H. C.
,
Utzinger
,
U.
,
Vande Geest
,
J. P.
, and
Azhar
,
M.
,
2012
, “
Altered Tissue Behavior of Non-Aneurysmal Descending Thoracic Aorta in the Mouse Model of Marfan Syndrome
,”
Cell Tissue Res.
,
347
(
1
), pp.
267
277
.
12.
Keyes
,
J. T.
,
Borowicz
,
S. M.
,
Rader
,
J. H.
,
Utzinger
,
U.
,
Azhar
,
M.
, and
Vande Geest
,
J. P.
, “
Design and Demonstration of a Microbiaxial Optomechanical Device for Multiscale Characterization of Soft Biological Tissues With Two-Photon Microscopy
,”
Microsc. Microanal.
,
17
(
2
), pp.
167
175
.
13.
Keyes
,
J. T.
,
Lockwood
,
D. R.
,
Utzinger
,
U.
,
Montilla
,
L. G.
,
Witte
,
R. S.
, and
Vande Geest
,
J. P.
,
2013
, “
Comparisons of Planar and Tubular Biaxial Tensile Testing Protocols of the Same Porcine Coronary Arteries
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1579
1591
.
14.
Keyes
,
J. T.
,
Utzinger
,
U.
, and
Vande Geest
,
J. P.
,
2011
, “
Adaptation of a Two-Photon-Microscope-Interfacing Planar Biaxial Testing Device for the Microstructural and Macroscopic Characterization of Small Tubular Tissue Specimens
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
075001
.
15.
Keyes
,
J. T.
,
Lockwood
,
D. R.
,
Simon
,
B. R.
, and
Vande Geest
,
J. P.
,
2013
, “
Deformationally Dependent Fluid Transport Properties of Porcine Coronary Arteries Based on Location in the Coronary Vasculature
,”
J. Mech. Behav. Biomed. Mater.
,
17
(
1
), pp.
296
306
.
16.
Keyes
,
J. T.
,
Haskett
,
D. G.
,
Utzinger
,
U.
,
Azhar
,
M.
, and
Vande Geest
,
J. P.
,
2011
, “
Adaptation of a Planar Microbiaxial Optomechanical Device for the Tubular Biaxial Microstructural and Macroscopic Characterization of Small Vascular Tissues
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
075001
.
17.
Williams
,
M. J.
,
Utzinger
,
U.
,
Barkmeier-Kraemer
,
J. M.
, and
Vande Geest
,
J. P.
,
2014
, “
Differences in the Microstructure and Biomechanical Properties of the Recurrent Laryngeal Nerve as a Function of Age and Location
,”
ASME J. Biomech. Eng.
,
136
(
8
), p.
081008
.
18.
Keyes
,
J. T.
,
Simon
,
B. R.
, and
Vande Geest
,
J. P.
,
2013
, “
Location - Dependent Coronary Artery Diffusive and Convective Mass Transport Properties of a Lipophilic Drug Surrogate Measured Using Nonlinear Microscopy
,”
Pharm. Res.
,
30
(
4
), pp.
1147
1160
.
19.
Dargaville
,
B. L.
,
Vaquette
,
C.
,
Rasoul
,
F.
,
Cooper-White
,
J. J.
,
Campbell
,
J. H.
, and
Whittaker
,
A. K.
,
2013
, “
Electrospinning and Crosslinking of Low-Molecular-Weight Poly(Trimethylene Carbonate-co-l-Lactide) as an Elastomeric Scaffold for Vascular Engineering
,”
Acta Biomater.
,
9
(
6
), pp.
6885
6897
.
20.
Ardila
,
D. C.
,
Tamimi
,
E.
,
Danford
,
F. L.
,
Haskett
,
D. G.
,
Kellar
,
R. S.
,
Doetschman
,
T.
, and
Vande Geest
,
J. P.
,
2014
, “
TGFβ2 Differentially Modulates Smooth Muscle Cell Proliferation and Migration in Electrospun Gelatin-Fibrinogen Constructs
,”
Biomaterials
,
37
(
1
), pp.
164
173
.
You do not currently have access to this content.