Wall shear stress (WSS) is one of the most studied hemodynamic parameters, used in correlating blood flow to various diseases. The pulsatile nature of blood flow, along with the complex geometries of diseased arteries, produces complicated temporal and spatial WSS patterns. Moreover, WSS is a vector, which further complicates its quantification and interpretation. The goal of this study is to investigate WSS magnitude, angle, and vector changes in space and time in complex blood flow. Abdominal aortic aneurysm (AAA) was chosen as a setting to explore WSS quantification. Patient-specific computational fluid dynamics (CFD) simulations were performed in six AAAs. New WSS parameters are introduced, and the pointwise correlation among these, and more traditional WSS parameters, was explored. WSS magnitude had positive correlation with spatial/temporal gradients of WSS magnitude. This motivated the definition of relative WSS gradients. WSS vectorial gradients were highly correlated with magnitude gradients. A mix WSS spatial gradient and a mix WSS temporal gradient are proposed to equally account for variations in the WSS angle and magnitude in single measures. The important role that WSS plays in regulating near wall transport, and the high correlation among some of the WSS parameters motivates further attention in revisiting the traditional approaches used in WSS characterizations.

References

References
1.
Barakat
,
A. I.
, and
Lieu
,
D. K.
,
2003
, “
Differential Responsiveness of Vascular Endothelial Cells to Different Types of Fluid Mechanical Shear Stress
,”
Cell Biochem. Biophys.
,
38
(
3
), pp.
323
343
.
2.
Lu
,
D.
, and
Kassab
,
G. S.
,
2011
, “
Role of Shear Stress and Stretch in Vascular Mechanobiology
,”
J. R. Soc., Interface
,
8
(
63
), pp.
1379
1385
.
3.
Chiu
,
J. J.
, and
Chien
,
S.
,
2011
, “
Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives
,”
Physiol. Rev.
,
91
(
1
), pp.
327
387
.
4.
Archie
,
J. P.
, Jr.
,
Hyun
,
S.
,
Kleinstreuer
,
C.
,
Longest
,
P. W.
,
Truskey
,
G. A.
, and
Buchanan
,
J. R.
,
2001
, “
Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels
,”
Crit. Rev. Biomed. Eng.
,
29
(
1
), pp.
1
64
.
5.
Gallo
,
D.
,
Isu
,
G.
,
Massai
,
D.
,
Pennella
,
F.
,
Deriu
,
M. A.
,
Ponzini
,
R.
,
Bignardi
,
C.
,
Audenino
,
A.
,
Rizzo
,
G.
, and
Morbiducci
,
U.
,
2014
, “
A Survey of Quantitative Descriptors of Arterial Flows
,”
Visualization and Simulation of Complex Flows in Biomedical Engineering
,
Springer
,
Dordrecht
, pp.
1
24
.
6.
Ostrowski
,
M. A.
,
Huang
,
N. F.
,
Walker
,
T. W.
,
Verwijlen
,
T.
,
Poplawski
,
C.
,
Khoo
,
A. S.
,
Cooke
,
J. P.
,
Fuller
,
G. G.
, and
Dunn
,
A. R.
,
2014
, “
Microvascular Endothelial Cells Migrate Upstream and Align Against the Shear Stress Field Created by Impinging Flow
,”
Biophys. J.
,
106
(
2
), pp.
366
374
.
7.
Meng
,
H.
,
Tutino
,
V. M.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2013
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.
8.
Watton
,
P. N.
,
Selimovic
,
A.
,
Raberger
,
N. B.
,
Huang
,
P.
,
Holzapfel
,
G. A.
, and
Ventikos
,
Y.
,
2011
, “
Modelling Evolution and the Evolving Mechanical Environment of Saccular Cerebral Aneurysms
,”
Biomech. Model. Mechanobiol.
,
10
(
1
), pp.
109
132
.
9.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arterioscler., Thromb., Vasc. Biol.
,
5
(
3
), pp.
293
302
.
10.
Knight
,
J.
,
Olgac
,
U.
,
Saur
,
S. C.
,
Poulikakos
,
D.
,
Marshall
,
W.
, Jr.
,
Cattin
,
P. C.
,
Alkadhi
,
H.
, and
Kurtcuoglu
,
V.
,
2010
, “
Choosing the Optimal Wall Shear Parameter for the Prediction of Plaque Location—A Patient-Specific Computational Study in Human Right Coronary Arteries
,”
Atherosclerosis
,
211
(
2
), pp.
445
450
.
11.
Buchanan
,
J. R.
, Jr.
,
Kleinstreuer
,
C.
,
Truskey
,
G. A.
, and
Lei
,
M.
,
1999
, “
Relation Between Non-Uniform Hemodynamics and Sites of Altered Permeability and Lesion Growth at the Rabbit Aorto-Celiac Junction
,”
Atherosclerosis
,
143
(
1
), pp.
27
40
.
12.
Dolan
,
J. M.
,
Kolega
,
J.
, and
Meng
,
H.
,
2013
, “
High Wall Shear Stress and Spatial Gradients in Vascular Pathology: A Review
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1411
1427
.
13.
Buchanan
,
J. R.
,
Kleinstreuer
,
C.
,
Hyun
,
S.
, and
Truskey
,
G. A.
,
2003
, “
Hemodynamics Simulation and Identification of Susceptible Sites of Atherosclerotic Lesion Formation in a Model Abdominal Aorta
,”
J. Biomech.
,
36
(
8
), pp.
1185
1196
.
14.
White
,
C. R.
,
Haidekker
,
M.
,
Bao
,
X.
, and
Frangos
,
J. A.
,
2001
, “
Temporal Gradients in Shear, But Not Spatial Gradients, Stimulate Endothelial Cell Proliferation
,”
Circulation
,
103
(
20
), pp.
2508
2513
.
15.
Dolan
,
J. M.
,
Meng
,
H.
,
Singh
,
S.
,
Paluch
,
R.
, and
Kolega
,
J.
,
2011
, “
High Fluid Shear Stress and Spatial Shear Stress Gradients Affect Endothelial Proliferation, Survival, and Alignment
,”
Ann. Biomed. Eng.
,
39
(
6
), pp.
1620
1631
.
16.
Van Wyk
,
S.
,
Wittberg
,
L. P.
, and
Fuchs
,
L.
,
2014
, “
Atherosclerotic Indicators for Blood-Like Fluids in 90-degree Arterial-Like Bifurcations
,”
Comput. Biol. Med.
,
50
, pp.
56
69
.
17.
Browne
,
L. D.
,
O'Callaghan
,
S.
,
Hoey
,
D. A.
,
Griffin
,
P.
,
McGloughlin
,
T. M.
, and
Walsh
,
M. T.
,
2014
, “
Correlation of Hemodynamic Parameters to Endothelial Cell Proliferation in an End to Side Anastomosis
,”
Cardiovasc. Eng. Technol.
,
5
(
1
), pp.
110
118
.
18.
Shimogonya
,
Y.
,
Ishikawa
,
T.
,
Imai
,
Y.
,
Matsuki
,
N.
, and
Yamaguchi
,
T.
,
2009
, “
Can Temporal Fluctuation in Spatial Wall Shear Stress Gradient Initiate a Cerebral Aneurysm? A Proposed Novel Hemodynamic Index, the Gradient Oscillatory Number (GON)
,”
J. Biomech.
,
42
(
4
), pp.
550
554
.
19.
Chen
,
H.
,
Selimovic
,
A.
,
Thompson
,
H.
,
Chiarini
,
A.
,
Penrose
,
J.
,
Ventikos
,
Y.
, and
Watton
,
P. N.
,
2013
, “
Investigating the Influence of Haemodynamic Stimuli on Intracranial Aneurysm Inception
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1492
1504
.
20.
Chakraborty
,
A.
,
Chakraborty
,
S.
,
Jala
, V
. R.
,
Haribabu
,
B.
,
Sharp
,
M. K.
, and
Berson
,
R. E.
,
2012
, “
Effects of Biaxial Oscillatory Shear Stress on Endothelial Cell Proliferation and Morphology
,”
Biotechnol. Bioeng.
,
109
(
3
), pp.
695
707
.
21.
Peiffer
,
V.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
Computation in the Rabbit Aorta of a New Metric—The Transverse Wall Shear Stress—To Quantify the Multidirectional Character of Disturbed Blood Flow
,”
J. Biomech.
,
46
(
15
), pp.
2651
2658
.
22.
Mohamied
,
Y.
,
Rowland
,
E. M.
,
Bailey
,
E. L.
,
Sherwin
,
S. J.
,
Schwartz
,
M. A.
, and
Weinberg
,
P. D.
,
2014
, “
Change of Direction in the Biomechanics of Atherosclerosis
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
16
25
.
23.
Morbiducci
,
U.
,
Gallo
,
D.
,
Cristofanelli
,
S.
,
Ponzini
,
R.
,
Deriu
,
M. A.
,
Rizzo
,
G.
, and
Steinman
,
D. A.
,
2015
, “
A Rational Approach to Defining Principal Axes of Multidirectional Wall Shear Stress in Realistic Vascular Geometries, With Application to the Study of the Influence of Helical Flow on Wall Shear Stress Directionality in Aorta
,”
J. Biomech.
,
48
(
6
), pp.
899
906
.
24.
Lee
,
S. W.
,
Antiga
,
L.
, and
Steinman
,
D. A.
,
2009
, “
Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061013
.
25.
Gambaruto
,
A. M.
,
Doorly
,
D. J.
, and
Yamaguchi
,
T.
,
2010
, “
Wall Shear Stress and Near-Wall Convective Transport: Comparisons With Vascular Remodelling in a Peripheral Graft Anastomosis
,”
J. Comput. Phys.
,
229
(
14
), pp.
5339
5356
.
26.
Gambaruto
,
A. M.
, and
João
,
A. J.
,
2012
, “
Flow Structures in Cerebral Aneurysms
,”
Comput. Fluids
,
65
, pp.
56
65
.
27.
El Hassan
,
M.
,
Assoum
,
H. H.
,
Martinuzzi
,
R.
,
Sobolik
,
V.
,
Abed-Meraim
,
K.
, and
Sakout
,
A.
,
2013
, “
Experimental Investigation of the Wall Shear Stress in a Circular Impinging Jet
,”
Phys. Fluids
,
25
(
7
), p.
077101
.
28.
Hansen
,
K.
, and
Shadden
,
S.
,
2015
, “
A Reduced-Dimensional Model for Near-Wall Transport in Cardiovascular Flows
,”
Biomech. Model. Mechanobiol.
, epub.
29.
Conway
,
D. E.
, and
Schwartz
,
M. A.
,
2013
, “
Flow-Dependent Cellular Mechanotransduction in Atherosclerosis
,”
J. Cell Sci.
,
126
(
22
), pp.
5101
5109
.
30.
John
,
K.
, and
Barakat
,
A. I.
,
2001
, “
Modulation of ATP/ADP Concentration at the Endothelial Surface by Shear Stress: Effect of Flow-Induced ATP Release
,”
Ann. Biomed. Eng.
,
29
(
9
), pp.
740
751
.
31.
Arzani
,
A.
, and
Shadden
,
S. C.
,
2012
, “
Characterization of the Transport Topology in Patient-Specific Abdominal Aortic Aneurysm Models
,”
Phys. Fluids
,
24
(
8
), p.
081901
.
32.
Arzani
,
A.
,
Les
,
A. S.
,
Dalman
,
R. L.
, and
Shadden
,
S. C.
,
2014
, “
Effect of Exercise on Patient Specific Abdominal Aortic Aneurysm Flow Topology and Mixing
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
2
), pp.
280
295
.
33.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
158
(
1
), pp.
155
196
.
34.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
,
2000
, “
A Generalized-Alpha Method for Integrating the Filtered Navier-Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3–4
), pp.
305
319
.
35.
Les
,
A. S.
,
Shadden
,
S. C.
,
Figueroa
,
C. A.
,
Park
,
J. M.
,
Tedesco
,
M. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
,
2010
, “
Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1288
1313
.
36.
Arzani
,
A.
,
Suh
,
G. Y.
,
Dalman
,
R. L.
, and
Shadden
,
S. C.
,
2014
, “
A Longitudinal Comparison of Hemodynamics and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
307
, pp.
H1786
H1795
.
37.
Martorell
,
J.
,
Santomá
,
P.
,
Kolandaivelu
,
K.
,
Kolachalama
, V
. B.
,
Melgar-Lesmes
,
P.
,
Molins
,
J. J.
,
Garcia
,
L.
,
Edelman
,
E. R.
, and
Balcells
,
M.
,
2014
, “
Extent of Flow Recirculation Governs Expression of Atherosclerotic and Thrombotic Biomarkers in Arterial Bifurcations
,”
Cardiovasc. Res.
,
103
(
1
), pp.
37
46
.
38.
Barbee
,
K. A.
,
2002
, “
Role of Subcellular Shear–Stress Distributions in Endothelial Cell Mechanotransduction
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
472
482
.
39.
Kuharsky
,
A. L.
, and
Fogelson
,
A. L.
,
2001
, “
Surface-Mediated Control of Blood Coagulation: The Role of Binding Site Densities and Platelet Deposition
,”
Biophys. J.
,
80
(
3
), pp.
1050
1074
.
40.
Ethier
,
C. R.
,
2002
, “
Computational Modeling of Mass Transfer and Links to Atherosclerosis
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
461
471
.
41.
Mantha
,
A.
,
Karmonik
,
C.
,
Benndorf
,
G.
,
Strother
,
C.
, and
Metcalfe
,
R.
,
2006
, “
Hemodynamics in a Cerebral Artery Before and After the Formation of an Aneurysm
,”
Am. J. Neuroradiol.
,
27
(
5
), pp.
1113
1118
.
42.
Stalder
,
A. F.
,
Russe
,
M. F.
,
Frydrychowicz
,
A.
,
Bock
,
J.
,
Hennig
,
J.
, and
Markl
,
M.
,
2008
, “
Quantitative 2D and 3D Phase Contrast MRI: Optimized Analysis of Blood Flow and Vessel Wall Parameters
,”
Magn. Reson. Med.
,
60
(
5
), pp.
1218
1231
.
43.
Gallo
,
D.
,
Steinman
,
D. A.
,
Bijari
,
P. B.
, and
Morbiducci
,
U.
,
2012
, “
Helical Flow in Carotid Bifurcation as Surrogate Marker of Exposure to Disturbed Shear
,”
J. Biomech.
,
45
(
14
), pp.
2398
2404
.
44.
Liu
,
X.
,
Sun
,
A.
,
Fan
,
Y.
, and
Deng
,
X.
,
2015
, “
Physiological Significance of Helical Flow in the Arterial System and Its Potential Clinical Applications
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
3
15
.
45.
Poelma
,
C.
,
Watton
,
P. N.
, and
Ventikos
,
Y.
,
2015
, “
Transitional Flow in Aneurysms and the Computation of Haemodynamic Parameters
,”
J. R. Soc., Interface
,
12
(
105
), p.
20141394
.
46.
Kataoka
,
N.
,
Ujita
,
S.
, and
Sato
,
M.
,
1998
, “
Effect of Flow Direction on the Morphological Responses of Cultured Bovine Aortic Endothelial Cells
,”
Med. Biol. Eng. Comput.
,
36
(
1
), pp.
122
128
.
47.
Peiffer
,
V.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
Does Low and Oscillatory Wall Shear Stress Correlate Spatially With Early Atherosclerosis? A Systematic Review
,”
Cardiovasc. Res.
,
99
, pp.
242
250
.
48.
Cherubini
,
C.
,
Filippi
,
S.
,
Gizzi
,
A.
, and
Nestola
,
M. G. C.
,
2015
, “
On the Wall Shear Stress Gradient in Fluid Dynamics
,”
Commun. Comput. Phys.
,
17
(
3
), pp.
808
821
.
You do not currently have access to this content.