We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task—with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities.

References

References
1.
Woollacott
,
M. H.
,
2000
, “
Systems Contributing to Balance Disorders in Older Adults
,”
J. Gerontol.
,
55A
(
8
), pp.
M424
M428
2.
Woollacott
,
M. H.
, and
Shumway-Cook
,
A.
,
1990
, “
Changes in Posture Control Across the Life Span-A Systems Approach
,”
Phys. Ther.
,
70
(12), pp.
799
807
.
3.
Rubenstein
,
L. Z.
,
2006
, “
Falls in Older People: Epidemiology, Risk Factors and Strategies for Prevention
,”
Age Ageing
,
35
(
Suppl. 2
), pp.
ii37
ii41
.
4.
Berg
,
K.
,
Wood-Dauphinee
,
S.
,
Williams
,
J. I.
, and
Maki
,
B.
,
1989
, “
Measuring Balance in the Elderly: Preliminary Development of an Instrument
,”
Physiother. Can.
,
41
(
6
), pp.
304
311
.
5.
Podsiadlo
,
D.
, and
Richardson
,
S.
,
1991
, “
The Timed ‘Up & Go’: A Test of Basic Functional Mobility for Frail Elderly Persons
,”
J. Am. Geriatr. Soc.
,
39
(
2
), pp.
142
148
.
6.
Fregly
,
A. R.
, and
Graybiel
,
A.
,
1968
, “
An Ataxia Test Battery Not Requiring Rails
,”
Aerosp. Med.
,
39
(
3
), pp.
277
282
.
7.
Sibley
,
K. M.
,
Straus
,
S. E.
,
Inness
,
E. L.
,
Salbach
,
N. M.
, and
Jaglal
,
S. B.
,
2013
, “
Clinical Balance Assessment: Perceptions of Commonly-Used Standardized Measures and Current Practices Among Physiotherapists in Ontario, Canada
,”
Implementation Sci.
,
8
(
33
), pp.
1
8
.
8.
McGinnis
,
P. Q.
,
Hack
,
L. M.
,
Nixon-Cave
,
K.
, and
Michlovitz
,
S. L.
,
2009
, “
Factors That Influence the Clinical Decision Making of Physical Therapists in Choosing a Balance Assessment Approach
,”
Phys. Ther.
,
89
(
3
), pp.
233
247
.
9.
McGlynn
,
M.
, and
Cott
,
C. A.
,
2007
, “
Weighing the Evidence: Clinical Decision Making in Neurological Physical Therapy
,”
Physiother. Can.
,
59
(
4
), pp.
241
254
.
10.
Hyndman
,
D.
,
Ashburn
,
A.
, and
Stack
,
E.
,
2002
, “
Fall Events Among People With Stroke Living in the Community: Circumstances of Falls and Characteristics of Fallers
,”
Arch. Phys. Med. Rehabil.
,
83
(
2
), pp.
165
170
.
11.
Hyndman
,
D.
, and
Ashburn
,
A.
,
2003
, “
People With Stroke Living in the Community: Attention Deficits, Balance, ADL Ability and Falls
,”
Disability Rehabil.
,
25
(
15
), pp.
817
822
.
12.
Oliver
,
D.
,
Daly
,
F.
,
Martin
,
F. C.
, and
McMurdo
,
M. E.
,
2004
, “
Risk Factors and Risk Assessment Tools for Falls in Hospitalised Patients: A Systematic Review
,”
Age Ageing
,
33
(
2
), pp.
122
130
.
13.
Harris
,
J. E.
,
Eng
,
J. J.
,
Marigold
,
D. S.
,
Tokuno
,
C. D.
, and
Louis
,
C. L.
,
2005
, “
Relationship of Balance and Mobility to Fall Incidence in People With Chronic Stroke
,”
Phys. Ther.
,
85
(
2
), pp.
150
158
.
14.
Belgen
,
B.
,
Beninato
,
M.
,
Sullivan
,
P. E.
, and
Narielwalla
,
K.
,
2006
, “
The Association of Balance Capacity and Falls Self-Efficacy With History of Falling in Community-Dwelling People With Chronic Stroke
,”
Arch. Phys. Med. Rehabil.
,
87
(
4
), pp.
554
561
.
15.
Paterka
,
R. J.
,
2002
, “
Sensorimotor Integration in Human Postural Control
,”
J. Neurophysiol.
,
88
(3), pp.
1097
1118
.
16.
Mergner
,
T.
,
2007
, “
Modeling Sensorimotor Control of Human Upright Stance
,”
Prog. Brain Res.
,
165
, pp.
283
297
.
17.
Barin
,
K.
,
1989
, “
Evaluation of a Generalized Model of Human Postural Dynamics and Control in the Sagittal Plane
,”
Biol. Cybern.
,
61
(
1
), pp.
37
50
.
18.
Kuo
,
A. D.
,
2005
, “
An Optimal State Estimation Model of Sensory Integration in Human Postural Balance
,”
J. Neural Eng.
,
2
(
3
), pp.
S235
S249
.
19.
Massion
,
J.
,
1992
, “
Movement, Coordination and Equilibrium: Interaction and Coordination
,”
Prog. Neurobiol.
,
38
(
1
), pp.
35
56
.
20.
Ramos
,
C. F.
, and
Stark
,
L. W.
,
1990
, “
Postural Maintenance During Movement: Simulations of a Two-Joint Model
,”
Biol. Cybern.
,
63
(
5
), pp.
363
375
.
21.
Ramos
,
C. F.
, and
Stark
,
L. W.
,
1990
, “
Postural Maintenance During Fast Forward Bending
,”
Exp. Brain Res.
,
82
(3), pp.
651
657
.
22.
Belenkiy
,
V. E.
,
Gurfinkel
,
V. S.
, and
Paltsev
,
E. I.
,
1967
, “
On Elements of Control of Voluntary Movements
,”
Biofizica
,
12
, pp.
135
141
.
23.
Bouisset
,
S.
, and
Zattara
,
M.
,
1990
, “
Segmental Movement as a Perturbation to Balance? Facts and Concepts
,”
Multiple Muscle Systems: Biomechanics and Movement Organization
,
J. M.
Winters
, and
S. Y.
Woo
, eds.,
Springer
,
New York
, pp.
498
506
.
24.
Lee
,
W. A.
,
Michaels
,
C. F.
, and
Pai
,
Y. C.
,
1990
, “
The Organization of Torque and EMG Activity During Bilateral Handle Pulls by Standing Humans
,”
Exp. Brain Res.
,
82
(2), pp.
304
314
.
25.
Shadmehr
,
R.
, and
Wise
,
S. P.
,
2005
,
A Computational Neurobiology of Reaching and Pointing
,
MIT Press
,
Cambridge, MA
.
26.
Mitsuo
,
K.
, and
Wolpert
,
D. M.
,
1998
, “
Internal Models for Motor Control
,”
Novartis Foundation
Symposium 218 - Sensory Guidance of Movement, Wiley, New York, pp.
291
307
.
27.
Kowato
,
M.
, 1999, “
Internal Models for Motor Control and Trajectory Planning
,”
Curr. Opin. Neurobiol.
,
9
(6), pp.
718
727
.
28.
Abe
,
N.
, and
Yamanaka
,
K.
,
2003
, “
Smith Predictor Control and Internal Model Control—A Tutorial
,”
SICE 2003 Annual Conference
, Fukui, Japan, Aug. 4–6, pp.
1383
1387
.
29.
Amblard
,
B.
,
1985
, “
Lateral Orientation and Stabilization of Human Stance: Static Versus Dynamic Visual Cues
,”
Exp. Brain Res.
,
61
(1), pp.
21
37
.
30.
Diener
,
H. C.
, and
Dichgans
,
J.
,
1988
, “
Pathophysiology of Posture
,”
Posture & Gate: Development, Adaptation & Modulation
, B. Amblard, A. Berthoz, and F. Clarac, eds.,
Excerpta Medica
, Amsterdam, pp.
229
235
.
31.
Bernstein
,
N.
,
1967
,
The Coordination and Regulation of Movements
,
Pergamon Press
,
Oxford, UK
.
32.
Nashner
,
L. M.
,
1977
, “
Fixed Patterns of Rapid Postural Responses Among Leg Muscles During Stance
,”
Exp. Brain Res.
,
30
(1), pp.
13
24
.
33.
Cordo
,
P. J.
, and
Nashner
,
L. M.
,
1982
, “
Properties of Postural Adjustments Associated With Rapid Arm Movements
,”
J. Neurophysiol.
,
47
(2), pp.
287
302
.
34.
Horak
,
F. B.
, and
Diener
,
H. C.
,
1994
, “
Cerebellar Control of Postural Scaling and Central Set in Stance
,”
J. Neurophysiol.
,
72
(
2
), pp.
479
493
.
35.
Gatev
,
P.
,
Thomas
,
S.
,
Kepple
,
T.
, and
Hallett
,
M.
,
1999
, “
Feedforward Ankle Strategy of Balance During Quiet Stance in Adults
,”
J. Physiol.
,
514
(
3
), pp.
915
928
.
36.
MacPherson
,
J. M.
,
1988
, “
Strategies That Simplify the Control of Quadrupedal Stance I. Forces at the Ground
,”
J. Neurophysiol.
,
60
(
1
), pp.
204
217
.
37.
MacPherson
,
J. M.
,
1988
, “
Strategies That Simplify the Control of Quadrupedal Stance II. Electromyographic Activity
,”
J. Neurophysiol.
,
60
(
1
), pp.
218
231
.
38.
Ting
,
L. H.
, and
MacPherson
,
J. M.
,
2005
, “
A Limited Set of Muscle Synergies for Force Control During a Postural Task
,”
J. Neurophysiol.
,
93
(1), pp.
609
613
.
39.
Ivanenko
,
Y. P.
,
Grasso
,
R.
,
Zago
,
M.
,
Molinari
,
M.
,
Scivoletto
,
G.
,
Castellano
,
V.
,
Macellari
,
V.
, and
Lacquaniti
,
F.
,
2003
, “
Temporal Components of the Motor Patterns Expressed by the Human Spinal Cord Reflect Foot Kinematics
,”
J. Neurophysiol.
,
90
(
5
), pp.
3555
3565
.
40.
Tresch
,
M.
,
Saltiel
,
P.
, and
Bizzi
,
E.
,
1999
, “
The Construction of Movement by the Spinal Cord
,”
Nat. Neurosci.
,
2
(
2
), pp.
162
167
.
41.
Athans
,
M.
,
1971
, “
The Role and Use of the Stochastic Linear-Quadratic-Gaussian Problem in Control System Design
,”
IEEE Trans. Autom. Control
,
AC-16
(
6
), pp.
529
552
.
42.
Todorov
,
E.
, and
Jordan
,
M. I.
,
2002
, “
Optimal Feedback Control as a Theory of Motor Coordination
,”
Nat. Neurosci.
,
5
(
11
), pp.
1226
1235
.
43.
Todorov
,
E.
,
2004
, “
Optimality Principles in Sensorimotor Control
,”
Nat. Neurosci.
,
7
(
9
), pp.
907
915
.
44.
Todorov
,
E.
,
2005
, “
Stochastic Optimal Control and Estimation Methods Adapted to the Noise Characteristics of the Sensorimotor System
,”
Neural Comput.
,
17
(
5
), pp.
1084
1108
.
45.
Liu
,
D.
, and
Todorov
,
E.
,
2007
, “
Evidence for the Flexible Sensorimotor Strategies Predicted by Optimal Feedback Control
,”
J. Neurosci.
,
27
(
35
), pp.
9354
9368
.
46.
Black
,
F. O.
,
Wall
,
C.
, III
, and
Nashner
,
L. M.
,
1983
, “
Effects of Visual and Support Surface Orientation References Upon Postural Control in Vestibular Deficient Subjects
,”
Acta Otolaryngol.
,
95
(1–4), pp.
199
210
.
47.
Kording
,
K.
, and
Wolpert
,
D. M.
,
2006
, “
Bayesian Decision Theory in Sensorimotor Control
,”
Trends Cognit. Sci.
,
10
(
7
), pp.
319
326
.
48.
Li
,
Y.
,
Levine
,
W. S.
, and
Loeb
,
G. E.
,
2012
, “
A Two-Joint Human Posture Control Model With Realistic Neural Delays
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
20
(
5
), pp.
738
748
.
49.
Faisal
,
A. A.
,
Luc
,
P. J.
, and
Wolpert
,
D. M.
,
2008
, “
Noise in the Nervous System
,”
Nat. Rev. Neurosci.
,
9
(
4
), pp.
292
303
.
50.
Horstmann
,
G. A.
, and
Dietz
,
V.
,
1990
, “
A Basic Posture Control Mechanism: The Stabilization of the Centre of Gravity
,”
Electroencephalogr. Clin. Neurophysiol.
,
76
(
2
), pp.
165
176
.
51.
Patla
,
A.
,
Frank
,
J.
, and
Winter
,
D. A.
,
1990
, “
Assessment of Balance Control in the Elderly
,”
Physiother. Can.
,
42
(
2
), pp.
89
97
.
52.
Pai
,
Y. C.
, and
Patton
,
J.
,
1997
, “
Center of Mass Velocity-Position Predictions for Balance Control
,”
J. Biomech.
,
30
(
4
), pp.
347
354
.
53.
de Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyuanov’s Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.
54.
Legnani
,
G.
,
Casolo
,
F.
,
Righettini
,
P.
, and
Zappa
,
B.
,
1996
, “
A Homogeneous Matrix Approach to 3D Kinematics and Dynamics I. Theory
,”
Mech. Mach. Theory
,
31
(
5
), pp.
573
587
.
55.
Legnani
,
G.
,
Casolo
,
F.
,
Righettini
,
P.
, and
Zappa
,
B.
,
1996
, “
A Homogeneous Matrix Approach to 3D Kinematics and Dynamics II. Applications to Chains of Rigid Bodies and Serial Manipulators
,”
Mech. Mach. Theory
,
31
(
5
), pp.
589
605
.
56.
Kiemel
,
T.
,
Oie
,
K. S.
, and
Jeka
,
J. J.
,
2006
, “
The Slow Dynamics of Postural Sway are in the Feedback Loop
,”
J. Neurophysiol.
,
95
(
3
), pp.
1410
1418
.
57.
Jagacinski
,
R. J.
, and
Flach
,
J. M.
,
2003
,
Control Theory in Humans: Quantitative Approaches to Modeling Performance
,
L. Erlbaum Associates
, Mahwah, NJ.
58.
Maki
,
B. E.
,
Holliday
,
P. J.
, and
Fernie
,
G. R.
,
1987
, “
A Posture Control Model and Balance Test for the Prediction of Relative Postural Stability
,”
IEEE Trans. Biomed. Eng.
,
BME-34
(
10
), pp.
797
810
.
59.
Johansson
,
R.
,
Magnusson
,
M.
, and
Åkesson
,
M.
,
1988
, “
Identification of Human Postural Dynamics
,”
IEEE Trans. Biomed. Eng.
,
35
(
10
), pp.
858
869
.
60.
Iqbal
,
K.
, and
Roy
,
A.
,
2009
, “
A Novel Theoretical Framework for the Dynamic Stability Analysis, Movement Control, and Trajectory Generation in a Multisegment Biomechanical Model
,”
ASME J. Biomech. Eng.
,
131
(1–6), pp.
1
13
.
61.
Nashner
,
L. M.
,
1971
, “
A Model Describing Vestibular Detection of Body Sway Motion
,”
Acta Otolaryngol.
,
72
(1–6), pp.
429
436
.
62.
Nashner
,
L. M.
,
1972
, “
Vestibular Postural Control Model
,”
Kybernetik
,
10
(
2
), pp.
106
110
.
63.
Mergner
,
T.
,
Maurer
,
C.
, and
Paterka
,
R. J.
,
2003
, “
A Multisensory Posture Control Model of Human Upright Stance
,”
Prog. Brain Res.
,
142
, pp.
189
201
.
64.
Maurer
,
C.
,
Mergner
,
T.
, and
Paterka
,
R. J.
,
2006
, “
Multisensory Control of Human Upright Stance
,”
Exp. Brain Res.
,
171
(
2
), pp.
231
250
.
65.
Hilliard
,
M. J.
,
Martinez
,
K. M.
,
Janssen
,
I.
,
Edwards
,
B.
,
Mille
,
M. L.
,
Zhang
,
Y.
, and
Rogers
,
M. W.
,
2008
, “
Lateral Balance Factors Predict Future Falls in Community-Living Older Adults
,”
Arch. Phys. Med. Rehabil.
,
89
(
9
), pp.
1708
1713
.
66.
Zatsiorsky
,
V. M.
,
Seluyanov
,
V. N.
, and
Chugunova
,
L. G.
,
1990
, “
Methods of Determining Mass-Inertial Characteristics of Human Body Segments
,”
Contempory Problems of Biomechanics
,
G. G.
Chernyi
, and
S. A.
Regirer
, eds.,
Mir Publishers
,
Moscow
, pp.
272
291
.
You do not currently have access to this content.