A finite element (FE) elbow model was developed to predict the contact stress and contact area of the native humeroradial joint. The model was validated using Fuji pressure sensitive film with cadaveric elbows for which axial loads of 50, 100, and 200 N were applied through the radial head. Maximum contact stresses ranged from 1.7 to 4.32 MPa by FE predictions and from 1.34 to 3.84 MPa by pressure sensitive film measurement while contact areas extended from 39.33 to 77.86 mm2 and 29.73 to 83.34 mm2 by FE prediction and experimental measurement, respectively. Measurements from cadaveric testing and FE predictions showed the same patterns in both the maximum contact stress and contact area, as another demonstration of agreement. While measured contact pressures and contact areas validated the FE predictions, computed maximum stresses and contact area tended to overestimate the maximum contact stress and contact area.

References

References
1.
Mason
,
M. L.
,
1954
, “
Some Observations on Fractures of the Head of the Radius With a Review of a Hundred Cases
,”
Br. J. Surg.
,
42
(
172
), pp.
123
132
.
2.
Taylor
,
T. K.
, and
O'Connor
,
B. T.
,
1964
, “
The Effect Upon the Inferior Radio-Ulnar Joint of Excision of the Head of the Radius in Adults
,”
J. Bone Jt. Surg., Br.
,
46
, pp.
83
88
.
3.
Moro
,
J. K.
,
Werier
,
J.
,
MacDermid
,
J. C.
,
Patterson
,
S. D.
, and
King
,
G. J.
,
2001
, “
Arthroplasty With a Metal Radial Head for Unreconstructible Fractures of the Radial Head
,”
J. Bone Jt. Surg.
,
83
(
8
), pp.
1201
1211
.
4.
Ring
,
D.
,
Quintero
,
J.
, and
Jupiter
,
J. B.
,
2002
, “
Open Reduction and Internal Fixation of Fractures of the Radial Head
,”
J. Bone Jt. Surg.
,
84
(
10
), pp.
1811
1815
.
5.
Ashwood
,
N.
,
Bain
,
G. I.
, and
Unni
,
R.
,
2004
, “
Management of Mason Type-III Radial Head Fractures With a Titanium Prosthesis, Ligament Repair, and Early Mobilization
,”
J. Bone Jt. Surg.
,
86
(
2
), pp.
274
280
.
6.
Moon
,
J. G.
,
Berglund
,
L. J.
,
Zachary
,
D.
,
An
,
K. N.
, and
O'Driscoll
,
S. W.
,
2009
, “
Radiocapitellar Joint Stability With Bipolar Versus Monopolar Radial Head Prostheses
,”
J. Shoulder Elbow Surg.
,
18
(
5
), pp.
779
784
.
7.
Harrington
,
I. J.
,
Sekyi-Otu
,
A.
,
Barrington
,
T. W.
,
Evans
,
D. C.
, and
Tuli
,
V.
,
2001
, “
The Functional Outcome With Metallic Radial Head Implants in the Treatment of Unstable Elbow Fractures: A Long-Term Review
,”
J. Trauma
,
50
(
1
), pp.
46
52
.
8.
Knight
,
D. J.
,
Rymaszewski
,
L. A.
,
Amis
,
A. A.
, and
Miller
,
J. H.
,
1993
, “
Primary Replacement of the Fractured Radial Head With a Metal Prosthesis
,”
J. Bone Jt. Surg., Br.
,
75
(
4
), pp.
572
576
.
9.
Muriuki
,
M. G.
,
Gilbertson
,
L. G.
, and
Harner
,
C. D.
,
2009
, “
Characterization of the Performance of a Custom Program for Image Processing of Pressure Sensitive Film
,”
ASME J. Biomech. Eng.
,
131
(
1
), p.
014503
.
10.
Schenck
,
R. C.
, Jr.
,
Athanasiou
,
K. A.
,
Constantinides
,
G.
, and
Gomez
,
E.
,
1994
, “
A Biomechanical Analysis of Articular Cartilage of the Human Elbow and a Potential Relationship to Osteochondritis Dissecans
,”
Clin. Orthop. Relat. Res.
,
299
, p.
305
.
11.
Stolk
,
J.
,
Verdonschot
,
N.
,
Cristofolini
,
L.
,
Toni
,
A.
, and
Huiskes
,
R.
,
2002
, “
Finite Element and Experimental Models of Cemented Hip Joint Reconstructions Can Produce Similar Bone and Cement Strains in Pre-Clinical Tests
,”
J. Biomech.
,
35
(
4
), pp.
499
510
.
12.
Park
,
S.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2004
, “
Mechanical Response of Bovine Articular Cartilage Under Dynamic Unconfined Compression Loading at Physiological Stress Levels
,”
Osteoarthritis Cartilage
,
12
(
1
), pp.
65
73
.
13.
Harris
,
M. D.
,
Anderson
,
A. E.
,
Henak
,
C. R.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2012
, “
Finite Element Prediction of Cartilage Contact Stresses in Normal Human Hips
,”
J. Orthop. Res.
,
30
(
7
), pp.
1133
1139
.
14.
Buchler
,
P.
,
Ramaniraka
,
N. A.
,
Rakotomanana
,
L. R.
,
Iannotti
,
J. P.
, and
Farron
,
A.
,
2002
, “
A Finite Element Model of the Shoulder: Application to the Comparison of Normal and Osteoarthritic Joints
,”
Clin. Biomech.
,
17
(
9–10
), pp.
630
639
.
15.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2008
, “
Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051008
.
16.
Regan
,
W. D.
,
Korinek
,
S. L.
,
Morrey
,
B. F.
, and
An
,
K. N.
,
1991
, “
Biomechanical Study of Ligaments Around the Elbow Joint
,”
Clin. Orthop. Relat. Res.
,
271
, pp.
170
179
.
17.
Afoke
,
N. Y.
,
Byers
,
P. D.
, and
Hutton
,
W. C.
,
1987
, “
Contact Pressures in the Human Hip Joint
,”
J. Bone. Jt. Surg., Br.
,
69
(
4
), pp.
536
541
.
18.
Haut
,
R. C.
,
1989
, “
Contact Pressures in the Patellofemoral Joint During Impact Loading on the Human Flexed Knee
,”
J. Orthop. Res.
,
7
(
2
), pp.
272
280
.
19.
Fukubayashi
,
T.
, and
Kurosawa
,
H.
,
1980
, “
The Contact Area and Pressure Distribution Pattern of the Knee. A Study of Normal and Osteoarthritic Knee Joints
,”
Acta Orthop. Scand.
,
51
(
6
), pp.
871
879
.
20.
Werner
,
F. W.
,
Murphy
,
D. J.
, and
Palmer
,
A. K.
,
1989
, “
Pressures in the Distal Radioulnar Joint: Effect of Surgical Procedures Used for Kienbock's Disease
,”
J. Orthop. Res.
,
7
(
3
), pp.
445
450
.
21.
Hale
,
J. E.
, and
Brown
,
T. D.
,
1992
, “
Contact Stress Gradient Detection Limits of Pressensor Film
,”
ASME J. Biomech. Eng.
,
114
(
3
), pp.
352
357
.
22.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
,
1998
, “
Effects of Inserting a Pressensor Film Into Articular Joints on the Actual Contact Mechanics
,”
ASME J. Biomech. Eng.
,
120
(
5
), pp.
655
659
.
23.
Liau
,
J. J.
,
Hu
,
C. C.
,
Cheng
,
C. K.
,
Huang
,
C. H.
, and
Lo
,
W. H.
,
2001
, “
The Influence of Inserting a Fuji Pressure Sensitive Film Between the Tibiofemoral Joint of Knee Prosthesis on Actual Contact Characteristics
,”
Clin. Biomech.
,
16
(
2
), pp.
160
166
.
24.
Liau
,
J. J.
,
Cheng
,
C. K.
,
Huang
,
C. H.
, and
Lo
,
W. H.
,
2002
, “
Effect of Fuji Pressure Sensitive Film on Actual Contact Characteristics of Artificial Tibiofemoral Joint
,”
Clin. Biomech.
,
17
(
9–10
), pp.
698
704
.
25.
Ateshian
,
G. A.
,
Kwak
,
S. D.
,
Soslowsky
,
L. J.
, and
Mow
,
V. C.
,
1994
, “
A Stereophotogrammetric Method for Determining In Situ Contact Areas in Diarthrodial Joints, and a Comparison With Other Methods
,”
J. Biomech.
,
27
(
1
), pp.
111
124
.
26.
Szivek
,
J. A.
,
Cutignola
,
L.
, and
Volz
,
R. G.
,
1995
, “
Tibiofemoral Contact Stress and Stress Distribution Evaluation of Total Knee Arthroplasties
,”
J. Arthroplasty
,
10
(
4
), pp.
480
491
.
27.
Stewart
,
T.
,
Jin
,
Z. M.
,
Shaw
,
D.
,
Auger
,
D. D.
,
Stone
,
M.
, and
Fisher
,
J.
,
1995
, “
Experimental and Theoretical Study of the Contact Mechanics of Five Total Knee Joint Replacements
,”
Proc. Inst. Mech. Eng., Part H
,
209
(
4
), pp.
225
231
.
28.
Harris
,
M. L.
,
Morberg
,
P.
,
Bruce
,
W. J.
, and
Walsh
,
W. R.
,
1999
, “
An Improved Method for Measuring Tibiofemoral Contact Areas in Total Knee Arthroplasty: A Comparison of K-Scan Sensor and Fuji Film
,”
J. Biomech.
,
32
(
9
), pp.
951
958
.
You do not currently have access to this content.