This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided—the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.

References

References
1.
Sutton
,
R. L.
,
1992
, “
Critical Cooling Rates for Aqueous Cryoprotectants in the Presence of Sugars and Polysaccharides
,”
Cryobiology
,
29
(
5
), pp.
585
598
.
2.
Hopkins
,
J. B.
,
Badeau
,
R.
,
Warkentin
,
M.
, and
Thorne
,
R. E.
,
2012
, “
Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions
,”
Cryobiology
,
65
(
3
), pp.
169
178
.
3.
Rabin
,
Y.
,
Taylor
,
M. J.
,
Walsh
,
J. R.
,
Baicu
,
S.
, and
Steif
,
P. S.
,
2005
, “
Cryomacroscopy of Vitrification I: A Prototype and Experimental Observations on the Cocktails VS55 and DP6
,”
Cell Preserv. Technol.
,
3
(
3
), pp.
169
183
.
4.
Baicu
,
S.
,
Taylor
,
M. J.
,
Chen
,
Z.
, and
Rabin
,
Y.
,
2006
, “
Vitrification of Carotid Artery Segments: An Integrated Study of Thermophysical Events and Functional Recovery Toward Scale-Up for Clinical Applications
,”
Cell Preserv. Technol.
,
4
(
4
), pp.
236
244
.
5.
Baicu
,
S.
,
Taylor
,
M. J.
,
Chen
,
Z.
, and
Rabin
,
Y.
,
2008
, “
Cryopreservation of Carotid Artery Segments Via Vitrification Subject to Marginal Thermal Conditions: Correlation of Freezing Visualization With Functional Recovery
,”
Cryobiology
,
57
(
1
), pp.
1
8
.
6.
Seki
,
S.
, and
Mazur
,
P.
,
2009
, “
The Dominance of Warming Rate Over Cooling Rate in the Survival of Mouse Oocytes Subjected to a Vitrification Procedure
,”
Cryobiology
,
59
(
1
), pp.
75
82
.
7.
Noday
,
D. A.
,
Steif
,
P. S.
, and
Rabin
,
Y.
,
2009
, “
Viscosity of Cryoprotective Agents Near Glass Transition: A New Device, Technique, and Data on DMSO, DP6, and VS55
,”
Exp. Mech.
,
49
(
5
), pp.
663
672
.
8.
Etheridge
,
M. L.
,
Xu
,
Y.
,
Rott
,
L.
,
Choi
,
J.
,
Glasmacher
,
B.
, and
Bischof
,
J.
,
2014
, “
RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials
,”
Technology
,
2
(
3
),
229
242
.
9.
Ehrlich
,
L. E.
,
Feig
,
J. S. G.
,
Malen
,
J. A.
,
Schiffres
,
S. N.
, and
Rabin
,
Y.
,
2013
, “
Integration of Transient Hot-Wire Method Into Scanning Cryomacroscopy in the Study of Thermal Conductivity of Dimethyl Sulfoxide
,”
Cryobiology
,
67
(
3
), p.
402
.
10.
Fahy
,
G. M.
,
Wowk
,
B.
,
Pagotan
,
R.
,
Chang
,
A.
,
Phan
,
J.
,
Thomson
,
B.
, and
Phan
,
L.
,
2009
, “
Physical and Biological Aspects of Renal Vitrification
,”
Organogenesis
,
5
(
3
), pp.
167
175
.
11.
Fahy
,
G. M.
,
Wowk
,
B.
,
Wu
,
J.
, and
Paynter
,
S.
,
2004
, “
Improved Vitrification Solutions Based on the Predictability of Vitrification Solution Toxicity
,”
Cryobiology
,
48
(
1
), pp.
22
35
.
12.
Taylor
,
M.
,
Song
,
Y.
, and
Brockbank
,
K.
,
2004
, “
22 Vitrification in Tissue Preservation: New Developments
,”
Life in the Frozen State
,
B. J.
Fuller
,
N.
Lane
, and
E. E.
Benson
, eds.,
CRC Press
, Boca Raton, FL, pp.
604
641
.
13.
Fahy
,
G. M.
,
2004
, “
Methods of Using Ice-Controlling Molecules
,” U.S. Patent US6773877 B2.
14.
Wowk
,
B.
, and
Fahy
,
G. M.
,
2002
, “
Inhibition of Bacterial Ice Nucleation by Polyglycerol Polymers
,”
Cryobiology
,
44
(
1
), pp.
14
23
.
15.
Eisenberg
,
D. P.
,
Taylor
,
M. J.
, and
Rabin
,
Y.
,
2012
, “
Thermal Expansion of the Cryoprotectant Cocktail DP6 Combined With Synthetic Ice Modulators in Presence and Absence of Biological Tissues
,”
Cryobiology
,
65
(
2
), pp.
117
125
.
16.
Eisenberg
,
D. P.
,
Taylor
,
M. J.
,
Jimenez-Rios
,
J. L.
, and
Rabin
,
Y.
,
2014
, “
Thermal Expansion of Vitrified Blood Vessels Permeated With DP6 and Synthetic Ice Modulators
,”
Cryobiology
,
68
(
3
), pp.
318
326
.
17.
Mehl
,
P. M.
,
1993
, “
Nucleation and Crystal Growth in a Vitrification Solution Tested for Organ Cryopreservation by Vitrification
,”
Cryobiology
,
30
(
5
), pp.
509
518
.
18.
Rios
,
J. L. J.
, and
Rabin
,
Y.
,
2006
, “
Thermal Expansion of Blood Vessels in Low Cryogenic Temperatures, Part II: Vitrification With VS55, DP6, and 7.05 M DMSO
,”
Cryobiology
,
52
(
2
), pp.
284
294
.
19.
Narayanaswamy
,
O. S.
,
1978
, “
Stress and Structural Relaxation in Tempering Glass
,”
J. Am. Ceram. Soc.
,
61
(3–4), pp.
146
152
.
20.
Narayanaswamy
,
O. S.
,
1971
, “
A Model of Structural Relaxation in Glass
,”
J. Am. Ceram. Soc.
,
54
(
10
), pp.
491
498
.
21.
Plitz
,
J.
,
Rabin
,
Y.
, and
Walsh
,
J.
,
2004
, “
The Effect of Thermal Expansion of Ingredients on the Cocktails VS55 and DP6
,”
Cell Preserv. Technol.
,
2
(
3
), pp.
215
226
.
22.
Rabin
,
Y.
, and
Plitz
,
J.
,
2005
, “
Thermal Expansion of Blood Vessels and Muscle Specimens Permeated With DMSO, DP6, and VS55 at Cryogenic Temperatures
,”
Ann. Biomed. Eng.
,
33
(
9
), pp.
1213
1228
.
23.
Jimenez Rios
,
J. L.
,
Steif
,
P. S.
, and
Rabin
,
Y.
,
2007
, “
Stress-Strain Measurements and Viscoelastic Response of Blood Vessels Cryopreserved by Vitrification
,”
Ann. Biomed. Eng.
,
35
(
12
), pp.
2077
2086
.
24.
Scherer
,
G. W.
,
1986
,
Relaxation in Glass and Composites
,
Wiley
,
New York
.
25.
Eisenberg
,
D. P.
,
Steif
,
P. S.
, and
Rabin
,
Y.
,
2014
, “
On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation
,”
Cryogenics
,
64
, pp.
86
94
.
26.
Steif
,
P. S.
,
Palastro
,
M. C.
, and
Rabin
,
Y.
,
2008
, “
Continuum Mechanics Analysis of Fracture Progression in the Vitrified Cryoprotective Agent DP6
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021006
.
27.
Steif
,
P.
,
Palastro
,
M.
, and
Rabin
,
Y.
,
2007
, “
The Effect of Temperature Gradients on Stress Development During Cryopreservation Via Vitrification
,”
Cell Preserv. Technol.
,
5
(
2
), pp.
104
115
.
28.
Rabin
,
Y.
, and
Steif
,
P. S.
,
1998
, “
Thermal Stresses in a Freezing Sphere and Its Application to Cryobiology
,”
ASME J. Appl. Mech.
,
65
(
2
), pp.
328
333
.
29.
Pegg
,
D. E.
,
Wusteman
,
M. C.
, and
Boylan
,
S.
,
1997
, “
Fractures in Cryopreserved Elastic Arteries
,”
Cryobiology
,
34
(
2
), pp.
183
192
.
30.
Hunt
,
C. J.
,
Song
,
Y. C.
,
Bateson
,
E. A.
, and
Pegg
,
D. E.
,
1994
, “
Fractures in Cryopreserved Arteries
,”
Cryobiology
,
31
(
5
), pp.
506
515
.
31.
Gordon
,
C.
,
1982
, “
Rewarming Mice From Hypothermia by Exposure to 2450-MHz Microwave Radiation
,”
Cryobiology
,
19
(4), pp.
428
434
.
32.
Cooper
,
D.
,
Ketterer
,
F.
, and
Holst
,
H.
,
1981
, “
Organ Temperature Measurement in a Microwave Oven by Resonance Frequency Shift
,”
Cryobiology
,
18
(
4
), pp.
378
385
.
33.
Wang
,
T.
,
Zhao
,
G.
,
Liang
,
X. M.
,
Xu
,
Y.
,
Li
,
Y.
,
Tang
,
H.
,
Jiang
,
R.
, and
Gao
,
D.
,
2014
, “
Numerical Simulation of the Effect of Superparamagnetic Nanoparticles on Microwave Rewarming of Cryopreserved Tissues
,”
Cryobiology
,
68
(
2
), pp.
234
243
.
34.
Burdette
,
E.
,
Wiggins
,
S.
,
Brown
,
R.
, and
Karow
,
A. K.
, Jr.
,
1980
, “
Microwave Thawing of Frozen Kidneys: A Theoretically Based Experimentally-Effective Design
,”
Cryobiology
,
17
(4), pp.
393
402
.
35.
Schmehl
,
M.
,
Graham
,
E.
, and
Kilkowski
,
S.
,
1990
, “
Thermographic Studies of Phantom and Canine Kidneys Thawed by Microwave Radiation
,”
Cryobiology
,
27
(3), pp.
311
318
.
36.
Phelan
,
M.
, and
Douglas
,
F.
,
1982
, “
Controlled-Rate Liquid N2—Microwave Biological Freeze—Thaw Device
,”
Cryobiology
,
19
(
4
), pp.
372
391
.
37.
Brockbank
,
K. G. M.
, and
Taylor
,
M. J.
,
2006
, “
Tissue Preservation
,”
Advances in Biopreservation
,
J. G.
Baust
, and
J. M.
Baust
, eds.,
CRC Press
, Boca Raton, FL, pp.
157
196
.
38.
Robinson
,
M. P.
,
Wusteman
,
M. C.
,
Wang
,
L.
, and
Pegg
,
D. E.
,
2002
, “
Electromagnetic Re-Warming of Cryopreserved Tissues: Effect of Choice of Cryoprotectant and Sample Shape on Uniformity of Heating
,”
Phys. Med. Biol.
,
47
(
13
), pp.
2311
2325
.
39.
Evans
,
S.
,
2000
, “
Electromagnetic Rewarming: The Effect of CPA Concentration and Radio Source Frequency on Uniformity and Efficiency of Heating
,”
Cryobiology
,
40
(
2
), pp.
126
138
.
40.
Wusteman
,
M.
,
Robinson
,
M.
, and
Pegg
,
D.
,
2004
, “
Vitrification of Large Tissues With Dielectric Warming: Biological Problems and Some Approaches to Their Solution
,”
Cryobiology
,
48
(
2
), pp.
179
189
.
41.
Hergt
,
R.
,
Dutz
,
S.
, and
Zeisberger
,
M.
,
2010
, “
Validity Limits of the Néel Relaxation Model of Magnetic Nanoparticles for Hyperthermia
,”
Nanotechnology
,
21
(
1
), p.
015706
.
42.
Lv
,
Y. G.
,
Deng
,
Z. S.
, and
Liu
,
J.
,
2005
, “
3-D Numerical Study on the Induced Heating Effects of Embedded Micro/Nanoparticles on Human Body Subject to External Medical Electromagnetic Field
,”
IEEE Trans. Nanobiosci.
,
4
(
4
), pp.
284
294
.
43.
Tasci
,
T. O.
,
Vargel
,
I.
,
Arat
,
A.
,
Guzel
,
E.
,
Korkusuz
,
P.
, and
Atalar
,
E.
,
2009
, “
Focused RF Hyperthermia Using Magnetic Fluids
,”
Med. Phys.
,
36
(
5
), pp.
1906
1912
.
44.
Hergt
,
R.
,
Andra
,
W.
, and
D'Ambly
,
C.
,
1998
, “
Physical Limits of Hyperthermia Using Magnetite Fine Particles
,”
IEEE Trans. Magn.
,
34
(
5
), pp.
3745
3754
.
45.
Steif
,
P. S.
,
Palastro
,
M.
,
Wan
,
C.-R.
,
Baicu
,
S.
,
Taylor
,
M. J.
, and
Rabin
,
Y.
,
2005
, “
Cryomacroscopy of Vitrification, Part II: Experimental Observations and Analysis of Fracture Formation in Vitrified VS55 and DP6
,”
Cell Preserv. Technol.
,
3
(
3
), pp.
184
200
.
46.
Jimenez Rios
,
J. L.
, and
Rabin
,
Y.
,
2006
, “
Thermal Expansion of Blood Vessels in Low Cryogenic Temperatures Part I: A New Experimental Device
,”
Cryobiology
,
52
(
2
), pp.
269
283
.
47.
Rabin
,
Y.
,
Steif
,
P. S.
,
Hess
,
K. C.
,
Jimenez-Rios
,
J. L.
, and
Palastro
,
M. C.
,
2006
, “
Fracture Formation in Vitrified Thin Films of Cryoprotectants
,”
Cryobiology
,
53
(
1
), pp.
75
95
.
48.
Jimenez Rios
,
J. L.
, and
Rabin
,
Y.
,
2007
, “
A New Device for Mechanical Testing of Blood Vessels at Cryogenic Temperatures
,”
Exp. Mech.
,
47
(
3
), pp.
337
346
.
49.
Feig
,
J. S. G.
, and
Rabin
,
Y.
,
2013
, “
Integration of Polarized Light Into Scanning Cryomacroscopy
,”
Cryobiology
,
67
(
3
), pp.
399
400
.
50.
Steif
,
P. S.
,
Noday
,
D. A.
, and
Rabin
,
Y.
,
2009
, “
Can Thermal Expansion Differences Between Cryopreserved Tissue and Cryoprotective Agents Alone Cause Cracking?
,”
Cryo-Lett.
,
30
(
6
), pp.
414
421
.
51.
Jones
,
S. J.
,
1982
, “
The Confined Compressive Strength of Polycrystalline Ice
,”
J. Glaciol.
,
28
(
98
), pp.
171
177
.
52.
Schulson
,
E. M.
,
1990
, “
The Brittle Compressive Fracture of Ice
,”
Acta Metall. Mater.
,
38
(
10
), pp.
1963
1976
.
53.
Hawkes
,
I.
, and
Mellor
,
M.
,
1972
, “
Deformation and Fracture of Ice Under Uniaxial Stress
,”
J. Glaciol.
,
11
(
61
), pp.
103
131
.
54.
Eisenberg
,
D. P.
, and
Rabin
,
Y.
,
2015
, “
Stress-Strain Measurements in Vitrified Arteries Permeated With Synthetic Ice Modulators
,”
ASME J. Biomech. Eng.
,
137
(
8
), p.
081007
.
55.
Aminabhavi
,
T. M.
, and
Gopalakrishna
,
B.
,
1995
, “
Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N,N-Dimethylformamide, Dimethylsulfoxide, N,N-Dimethylacetamide, Acetonitrile, Ethylene-Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methodyethanol, and 2-Ethox
,”
J. Chem. Eng. Data
,
40
(
4
), pp.
856
861
.
You do not currently have access to this content.