Advances in volumetric medical imaging techniques allowed the subject-specific modeling of the bronchial flow through the first few generations of the central airways using computational fluid dynamics (CFD). However, a reliable CFD prediction of the bronchial flow requires modeling of the inhomogeneous deformation of the central airways during breathing. This paper addresses this issue by introducing two models of the central airways motion. The first model utilizes a node-to-node mapping between the discretized geometries of the central airways generated from a number of successive computed tomography (CT) images acquired dynamically (without breath hold) over the breathing cycle of two Sprague-Dawley rats. The second model uses a node-to-node mapping between only two discretized airway geometries generated from the CT images acquired at end-exhale and at end-inhale along with the ventilator measurement of the lung volume change. The advantage of this second model is that it uses just one pair of CT images, which more readily complies with the radiation dosage restrictions for humans. Three-dimensional computer aided design geometries of the central airways generated from the dynamic-CT images were used as benchmarks to validate the output from the two models at sampled time-points over the breathing cycle. The central airway geometries deformed by the first model showed good agreement to the benchmark geometries within a tolerance of 4%. The central airway geometry deformed by the second model better approximated the benchmark geometries than previous approaches that used a linear or harmonic motion model.

References

References
1.
McClelland
,
J. R.
,
Blackall
,
J. M.
,
Tarte
,
S.
,
Chandler
,
A. C.
,
Hughes
,
S.
,
Ahmad
,
S.
,
Landau
,
D. B.
, and
Hawkes
,
D. J.
,
2006
, “
A Continuous 4D Motion Model From Multiple Respiratory Cycles for Use in Lung Radiotherapy
,”
Med. Phys.
,
33
(
9
), pp.
3348
3358
.
2.
Boldea
,
V.
,
Sharp
,
G. C.
,
Jiang
,
S. B.
, and
Sarrut
,
D.
,
2008
, “
4D-CT Lung Motion Estimation With Deformable Registration: Quantification of Motion Nonlinearity and Hysteresis
,”
Med. Phys.
,
35
(
3
), pp.
1008
1018
.
3.
Klinder
,
T.
,
Lorenz
,
C.
,
von Berg
,
J.
,
Renisch
,
S.
,
Blaffert
,
T.
, and
Ostermann
,
J.
,
2008
, “
4DCT Image-Based Lung Motion Field Extraction and Analysis
,”
Proc. SPIE
,
6914
, p.
69141L
.
4.
Werner
,
R.
,
Ehrhardt
,
J.
,
Schmidt-Richberg
,
A.
, and
Handels
,
H.
,
2009
, “
Validation and Comparison of a Biophysical Modeling Approach and Non-Linear Registration for Estimation of Lung Motion Fields in Thoracic 4D CT Data
,”
Proc. SPIE
,
7258
, p.
72590U
.
5.
Eom
,
J.
,
Xu
,
X. G.
,
De
,
S.
, and
Shi
,
C.
,
2010
, “
Predictive Modeling of Lung Motion Over the Entire Respiratory Cycle Using Measured Pressure-Volume Data, 4DCT Images, and Finite-Element Analysis
,”
Med. Phys.
,
37
(
8
), pp.
4389
4400
.
6.
White
,
B.
,
Zhao
,
T.
,
Lamb
,
J.
,
Wuenschel
,
S.
,
Bradley
,
J.
,
El Naqa
,
I.
, and
Low
,
D.
,
2013
, “
Distribution of Lung Tissue Hysteresis During Free Breathing
,”
Med. Phys.
,
40
(
4
), p.
043501
.
7.
Zhang
,
Y.
,
Yang
,
J.
,
Zhang
,
L.
,
Court
,
L. E.
,
Balter
,
P. A.
, and
Dong
,
L.
,
2013
, “
Modeling Respiratory Motion for Reducing Motion Artifacts in 4D CT Images
,”
Med. Phys.
,
40
(
4
), p.
041716
.
8.
Burri
,
P. H.
,
Gil
,
J.
, and
Weibel
,
E. R.
,
2005
, “
Ultrastructure and Morphometry of the Human Lung
,”
General Thoracic Surgery
,
T. W.
Shields
,
J.
LoCicero
,
R. B.
,
Ponn
, and
V. W.
Rusch
, eds.,
Lippincott Williams & Wilkins
,
Philadelphia, PA
.
9.
Jacob
,
R.
, and
Lamm
,
W.
,
2011
, “
Stable Small Animal Ventilation for Dynamic Lung Imaging to Support Computational Fluid Dynamics Models
,”
PLoS One
,
6
(
11
), p.
e27577
.
10.
Lin
,
C.-L.
,
Tawhai
,
M. H.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
,
2007
, “
Characteristics of the Turbulent Laryngeal Jet and Its Effect on Airflow in the Human Intra-Thoracic Airways
,”
Respir. Physiol. Neurobiol.
,
157
(
2–3
), pp.
295
309
.
11.
De Backer
,
J. W.
,
Vos
,
W. G.
,
Devolder
,
A.
,
Verhulst
,
S. L.
,
Germonpré
,
P.
,
Wuyts
,
F. L.
,
Parizel
,
P. M.
, and
De Backer
,
W.
,
2008
, “
Computational Fluid Dynamics can Detect Changes in Airway Resistance in Asthmatics After Acute Bronchodilation
,”
J. Biomech.
,
41
(
1
), pp.
106
113
.
12.
De Backer
,
J. W.
,
Vos
,
W. G.
,
Gorlé
,
C. D.
,
Germonpré
,
P.
,
Partoens
,
B.
,
Wuyts
,
F. L.
, and
Parizel
,
P. M.
,
2008
, “
Flow Analyses in the Lower Airways: Patient-Specific Model and Boundary Conditions
,”
Med. Eng. Phys.
,
30
(
7
), pp.
872
879
.
13.
Freitas
,
R. K.
, and
Schroder
,
W.
,
2008
, “
Numerical Investigation of the Three-Dimensional Flow in a Human Lung Model
,”
J. Biomech.
,
41
(
11
), pp.
2446
2457
.
14.
Choi
,
J.
,
Tawhai
,
M. H.
,
Hoffman
,
E. A.
, and
Lin
,
C.-L.
,
2009
, “
On Intra- and Intersubject Variabilities of Airflow in the Human Lungs
,”
Phys. Fluids
,
21
(
10
), p.
101901
.
15.
Lin
,
C.-L.
,
Tawhai
,
M. H.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
,
2009
, “
Multiscale Simulation of Gas Flow in Subject-Specific Models of the Human Lung
,”
IEEE Eng. Med. Biol. Mag.
,
28
(
3
), pp.
25
33
.
16.
De Backer
,
J. W.
,
Vos
,
W. G.
,
Vinchurkar
,
S. C.
,
Claes
,
R.
,
Drollmann
,
A.
,
Wulfrank
,
D.
,
Parizel
,
P. M.
,
Germonpré
,
P.
, and
De Backer
,
W.
,
2010
, “
Validation of Computational Fluid Dynamics in CT-Based Airway Models With SPECT/CT
,”
Radiology
,
257
(
3
), pp.
854
862
.
17.
Yin
,
Y.
,
Choi
,
J.
,
Hoffman
,
E. A.
,
Tawhai
,
M. H.
, and
Lin
,
C. L.
,
2010
, “
Simulation of Pulmonary Air Flow With a Subject-Specific Boundary Condition
,”
J. Biomech.
,
43
(
11
), pp.
2159
2163
.
18.
Corley
,
R. A.
,
Kabilan
,
S.
,
Kuprat
,
A.
,
Carson
,
J.
,
Minard
,
K. R.
,
Jacob
,
R. E.
,
Timchalk
,
C.
,
Glenny
,
R.
,
Pipavath
,
S.
,
Cox
,
T.
,
Wallis
,
C.
,
Larson
,
R. F.
,
Fanucchi
,
M. V.
,
Postlethwait
,
E.
, and
Einstein
,
D. R.
,
2012
, “
Comparative Computational Modeling of Airflows and Vapor Dosimety in the Respiratory Tracts of a Rat, Monkey, and Human
,”
Toxicol. Sci.
,
128
(
2
), pp.
500
516
.
19.
Chen
,
F. L.
,
Horng
,
T. L.
, and
Shih
,
T. C.
,
2014
, “
Simulation Analysis of Airflow Alteration in the Trachea Following the Vascular Ring Surgery Based on CT Images Using the Computational Fluid Dynamics Method
,”
J. X-Ray Sci. Technol.
,
22
(
2
), pp.
213
225
.
20.
Qi
,
S.
,
Li
,
Z.
,
Yue
,
Y.
,
van Triest
,
H. J.
, and
Kang
,
Y.
,
2014
, “
Computational Fluid Dynamics Simulation of Airflow in the Trachea and Main Bronchi for the Subjects With Left Pulmonary Artery Sling
,”
Biomed. Eng.
,
13
(
85
), pp.
1
15
.
21.
Yin
,
Y.
,
Choi
,
J.
,
Hoffman
,
E. A.
,
Tawhai
,
M. H.
, and
Lin
,
C.-L.
,
2013
, “
A Multiscale MDCT Image-Based Breathing Lung Model With Time-Varying Regional Ventilation
,”
J. Comput. Phys.
,
244
, pp.
168
192
.
22.
Ibrahim
,
G.
,
Hainsworth
,
S. V.
, and
Rona
,
A.
,
2012
, “
Airflow Simulation Through a Dynamic Subject-Specific Model of the Central Airways
,”
International Conference on Applications of Fluid Engineering
(
CAFE 2012
) Greater Noida,
India
, Sept. 20–22.
23.
Sera
,
T.
,
Yokota
,
H.
,
Himeno
,
R.
, and
Tanaka
,
G.
,
2013
, “
Gas Dispersion of Oscillatory Flow in Expanding and Contracting Multi-Branching Airways
,”
Int. J. Heat Mass Transfer
,
65
, pp.
627
634
.
24.
Vedam
,
S.
,
Docef
,
A.
,
Fix
,
M.
,
Murphy
,
M.
, and
Keall
,
P.
,
2005
, “
Dosimetric Impact of Geometric Errors Due to Respiratory Motion Prediction on Dynamic Multileaf Collimator-Based Four-Dimensional Radiation Delivery
,”
Med. Phys.
,
32
(
6
), pp.
1607
1620
.
25.
Hylla
,
E.
,
Frederich
,
O.
,
Thiele
,
F.
,
Wang
,
X.
,
Wegner
,
I.
,
Meinzer
,
H. P.
, and
Puderbach
,
M.
,
2010
, “
Flow in Naturally Changing Central Airways
,”
Fifth European Conference on Computational Fluid Dynamics
,
J. C. F.
Pereira
, and
A.
Sequeira
, eds.
Lisbon
,
Portugal
, June 14–17.
26.
Lorensen
,
W. E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
14th Annual Conference on Computer Graphics and Interactive Techniques
(
SIGGRAPH '87
), Anaheim, CA, July 27–31,
ACM
,
New York
, pp.
163
169
.
27.
Palágyi
,
K.
,
Sorantin
,
E.
,
Balogh
,
E.
,
Kuba
,
A.
,
Halmai
,
C.
,
Erdohelyi
,
B.
, and
Hausegger
,
K.
,
2001
, “
A Sequential 3D Thinning Algorithm and Its Medical Applications
,”
17th International Conference on Information Processing in Medical Imaging
(
IPMI'01
), Davis, CA, June 18–22,
M. F.
Insana
, and
R. M.
Leahy
, eds.,
Springer-Verlag
,
Berlin
, pp.
409
415
.
28.
Dannenhoffer
,
J. F.
,
1991
, “
A Block-Structuring Technique for General Geometries
,”
AIAA
Paper No. 91-0145.
29.
Amelon
,
R.
,
Cao
,
K.
,
Ding
,
K.
,
Christensen
,
G. E.
,
Reinhardt
,
J. M.
, and
Raghavan
,
M. L.
,
2011
, “
Three Dimensional Characterization of Regional Lung Deformation
,”
J. Biomech.
,
44
(
13
), pp.
2489
2495
.
30.
Ehrhardt
,
J.
,
Werner
,
R.
,
Schmidt-Richberg
,
A.
, and
Handels
,
H.
,
2011
, “
Statistical Modeling of 4D Respiratory Lung Motion Using Diffeomorphic Image Registration
,”
IEEE Trans. Med. Imaging
,
30
(
2
), pp.
251
265
.
31.
Escolar
,
J. D.
, and
Escolar
,
A.
,
2004
, “
Lung Hysteresis: A Morphological View
,”
Histol. Histopathol.
,
19
(
1
), pp.
159
166
.
32.
Sera
,
T.
,
Fujioka
,
H.
,
Yokota
,
H.
,
Makinouchi
,
A.
,
Himeno
,
R.
,
Schroter
,
R. C.
, and
Tanishita
,
K.
,
2004
, “
Localized Compliance of Small Airways in Excised Rat Lungs Using Microfocal X-Ray Computed Tomography
,”
J. Appl. Physiol.
,
96
(
5
), pp.
1665
1673
.
33.
Hughes
,
J. M.
,
Hoppin
, Jr.,
F. G.
, and
Mead
,
J.
,
1972
, “
Effect of Lung Inflation on Bronchial Length and Diameter in Excised Lungs
,”
J. Appl. Physiol.
,
32
(
1
), pp.
25
35
.
34.
Stahl
,
W. R.
,
1967
, “
Scaling of Respiratory Variables in Mammals
,”
J. Appl. Physiol.
,
22
(
3
), pp.
453
460
.
35.
Christensen
,
G. E.
,
Song
,
J. H.
,
Lu
,
W.
,
El Naqa
,
I.
, and
Low
,
D. A.
,
2007
, “
Tracking Lung Tissue Motion and Expansion/Compression With Inverse Consistent Image Registration and Spirometry
,”
Med. Phys.
,
34
(
6
), pp.
2155
2163
.
36.
Ibrahim
,
G.
,
Rona
,
A.
, and
Hainsworth
,
S. V.
,
2015
, “
Non-Uniform Central Airways Ventilation Model Based on Vascular Segmentation
,”
Comput. Biol. Med.
,
65
, pp.
137
145
.
You do not currently have access to this content.