When developing high-fidelity computational model of vocal fold vibration for voice production of individuals, one would run into typical issues of unknown model parameters and model validation of individual-specific characteristics of phonation. In the current study, the evoked rabbit phonation is adopted to explore some of these issues. In particular, the mechanical properties of the rabbit's vocal fold tissue are unknown for individual subjects. In the model, we couple a 3D vocal fold model that is based on the magnetic resonance (MR) scan of the rabbit larynx and a simple one-dimensional (1D) model for the glottal airflow to perform fast simulations of the vocal fold dynamics. This hybrid three-dimensional (3D)/1D model is then used along with the experimental measurement of each individual subject for determination of the vocal fold properties. The vibration frequency and deformation amplitude from the final model are matched reasonably well for individual subjects. The modeling and validation approaches adopted here could be useful for future development of subject-specific computational models of vocal fold vibration.

References

References
1.
Mittal
,
R.
,
Erath
,
B. D.
, and
Plesniak
,
M. W.
,
2012
, “
Fluid Dynamics of Human Phonation and Speech
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
437
467
.
2.
Titze
,
I. R.
,
1988
, “
The Physics of Small-Amplitude Oscillation of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
83
(
4
), pp.
1536
1552
.
3.
Zhang
,
Y.
, and
Jiang
,
J. J.
,
2004
, “
Chaotic Vibrations of a Vocal Fold Model With a Unilateral Polyp
,”
J. Acoust. Soc. Am.
,
115
(
3
), pp.
1266
1269
.
4.
Tao
,
C.
,
Jiang
,
J. J.
, and
Zhang
,
Y.
,
2006
, “
Simulation of Vocal Fold Impact Pressures With a Self-Oscillating Finite-Element Model
,”
J. Acoust. Soc. Am.
,
119
(
6
), pp.
3987
3994
.
5.
Luo
,
H.
,
Mittal
,
R.
,
Zheng
,
X.
,
Bielamowicz
,
S. A.
,
Walsh
,
R. J.
, and
Hahn
,
J. K.
,
2008
, “
An Immersed-Boundary Method for Flow-Structure Interaction in Biological Systems With Application to Phonation
,”
J. Comput. Phys.
,
227
(
22
), pp.
9303
9332
.
6.
Alipour
,
F.
,
Berry
,
D. A.
, and
Titze
, I
. R.
,
2000
, “
A Finite-Element Model of Vocal-Fold Vibration
,”
J. Acoust. Soc. Am.
,
108
(
6
), pp.
3003
3012
.
7.
Hunter
,
E. J.
,
Titze
,
I. R.
, and
Alipour
,
F.
,
2004
, “
A Three-Dimensional Model of Vocal Fold Abduction/Adduction
,”
J. Acoust. Soc. Am.
,
115
(
4
), pp.
1747
1759
.
8.
Zheng
,
X.
, and
Mittal
,
R.
,
2011
, “
A Computational Study of Asymmetric Glottal Jet Deflection During Phonation
,”
J. Acoust. Soc. Am.
,
129
(
4
), pp.
2133
2143
.
9.
Tian
,
F.-B.
,
Dai
,
H.
,
Luo
,
H.
,
Doyle
,
J. F.
, and
Rousseau
,
B.
,
2014
, “
Fluid-Structure Interaction Involving Large Deformations: 3D Simulations and Applications to Biological Systems
,”
J. Comput. Phys.
,
258
, pp.
451
469
.
10.
Tao
,
C.
, and
Jiang
,
J. J.
,
2007
, “
Mechanical Stress During Phonation in a Self-Oscillating Finite-Element Vocal Fold Model
,”
J. Biomech.
,
40
(
10
), pp.
2191
2198
.
11.
Mittal
,
R.
,
Zheng
,
X.
,
Bhardwaj
,
R.
,
Seo
,
J. H.
,
Xue
,
Q.
, and
Bielamowicz
,
S.
,
2011
, “
Toward a Simulation-Based Tool for the Treatment of Vocal Fold Paralysis
,”
Front. Physiol.
,
2
, pp.
2
19
.
12.
Xue
,
Q.
,
Zheng
,
X.
,
Mittal
,
R.
, and
Bielamowicz
,
S.
,
2014
, “
Subject-Specific Computational Modeling of Human Phonation
,”
J. Acoust. Soc. Am.
,
135
(
3
), pp.
1445
1456
.
13.
Ge
,
P. J.
,
French
,
L. C.
,
Ohno
,
T.
,
Zealear
,
D. L.
, and
Rousseau
,
B.
,
2009
, “
Model of Evoked Rabbit Phonation
,”
Ann. Otol. Rhinol. Laryngol.
,
118
(
1
), pp.
51
55
.
14.
Swanson
,
E. R.
,
Ohno
,
T.
,
Abdollahian
,
D.
,
Garrett
,
C. G.
, and
Rousseau
,
B.
,
2010
, “
Effects of Raised-Intensity Phonation on Inflammatory Mediator Gene Expression in Normal Rabbit Vocal Fold
,”
Otolaryngol. Head Neck Surg.
,
143
(
4
), pp.
567
572
.
15.
Novaleski
,
C. K.
,
Kojima
,
T.
,
Chang
,
S.
,
Luo
,
H.
,
Valenzuela
,
C. V.
, and
Rousseau
,
B.
, “
Non-Stimulated Rabbit Phonation Model: Cricothyroid Approximation
,”
Laryngoscope
(in press).
16.
Chang
,
S.
,
Tian
,
F.-B.
,
Luo
,
H.
,
Doyle
,
J. F.
, and
Rousseau
,
B.
,
2013
, “
The Role of Finite Displacements in Vocal Fold Modeling
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111008
.
17.
Zhang
,
Z.
,
2009
, “
Characteristics of Phonation Onset in a Two-Layer Vocal Fold Model
,”
J. Acoust. Soc. Am.
,
125
(
2
), pp.
1091
1102
.
18.
Titze
,
I. R.
, and
Martin
,
D. W.
,
1998
, “
Principles of Voice Production
,”
J. Acoust. Soc. Am.
,
104
(
3
), p.
1148
.
19.
Decker
,
G. Z.
, and
Thomson
,
S. L.
,
2007
, “
Computational Simulations of Vocal Fold Vibration: Bernoulli Versus Navier-Stokes
,”
J. Voice
,
21
(
3
), pp.
273
284
.
20.
Mendelsohn
,
A.
, and
Zhang
,
Z.
,
2010
, “
Phonation Threshold Pressure and Frequency in a Two-Layer Physical Model of the Vocal Folds: Comparison Between Experiment and Theory
,”
J. Acoust. Soc. Am.
,
128
(
4
), p.
2474
.
21.
Thibeault
,
S. L.
,
Gray
,
S. D.
,
Bless
,
D. M.
,
Chan
,
R. W.
, and
Ford
,
C. N.
,
2002
, “
Histologic and Rheologic Characterization of Vocal Fold Scarring
,”
J. Voice
,
16
(
1
), pp.
96
104
.
22.
Rousseau
,
B.
,
Hirano
,
S.
,
Chan
,
R. W.
,
Welham
,
N. V.
,
Thibeault
,
S. L.
,
Ford
,
C. N.
, and
Bless
,
D. M.
,
2004
, “
Characterization of Chronic Vocal Fold Scarringin a Rabbit Model
,”
J. Voice
,
18
(
1
), pp.
116
124
.
23.
Latifi
,
N.
,
Miri
,
A. K.
, and
Mongeau
,
L.
,
2014
, “
Determination of the Elastic Properties of Rabbit Vocal Fold Tissue Using Uniaxial Tensile Testing and a Tailored Finite Element Model
,”
J. Mech. Behav. Biomed. Mater.
,
39
, pp.
366
374
.
24.
Zhang
,
K.
,
Siegmund
,
T.
, and
Chan
,
R. W.
,
2006
, “
A Constitutive Model of the Human Vocal Fold Cover for Fundamental Frequency Regulation
,”
J. Acoust. Soc. Am.
,
119
(
2
), pp.
1050
1062
.
You do not currently have access to this content.