The study presents a numerical methodology for minimizing the bone loss in human femur submitted to total hip replacement (THR) procedure with focus on cemented femoral stem. Three-dimensional computational models were used to describe the femoral bone behavior. An optimization procedure using the genetic algorithm (GA) method was applied in order to minimize the bone loss, considering the geometry and the material of the prosthesis as well as the design of the stem. Internal and external bone remodeling were analyzed numerically. The numerical method proposed here showed that the bone mass loss could be reduced by 24%, changing the design parameters.

References

References
1.
Spinelli
,
L. F.
,
Macedo
,
C. A. S.
,
Galia
,
C. R.
,
Rosito
,
R.
,
Schnaid
,
F.
,
Corso
,
L. L.
, and
Iturrioz
,
I.
,
2012
, “
Femoral Stem-Bone Interface Analysis of Logical Uncemented Stem
,”
Braz. J. Biomed. Eng.
,
28
(
3
), pp.
238
247
.
2.
Bennet
,
D.
, and
Goswami
,
T.
,
2008
, “
Finite Element Analysis of Hip Stem Designs
,”
Mater. Des.
,
29
(
1
), pp.
45
60
.
3.
Prendergast
,
P. J.
,
1997
, “
Finite Element Models in Tissue Mechanics and Orthopaedic Implant Design
,”
Clin. Biomech.
,
12
(
6
), pp.
343
366
.
4.
Huiskes
,
R.
, and
van Rietbergen
,
B.
,
1995
, “
Preclinical Testing of Total Hip Stems: The Effects of Coating Placement
,”
Clin. Orthop. Relat. Res.
,
319
, pp.
64
76
.
5.
Zidi
,
M.
, and
Ramtani
,
S.
,
2000
, “
Stability Analysis and Finite Element Simulation of Bone Remodeling Model
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
677
680
.
6.
Huiskes
,
R.
, and
Boeklagen
,
R.
,
1989
, “
Mathematical Shape Optimization of Hip Prosthesis Design
,”
J. Biomech.
,
22
(
8–9
), pp.
793
804
.
7.
Fernandes
,
P. R.
,
Folgado
,
J.
, and
Ruben
,
R. B.
,
2004
, “
Shape Optimization of a Cementless Hip Stem for a Minimum of Interface Stress and Displacement
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
1
), pp.
51
61
.
8.
Ruben
,
R. B.
,
Fernandes
,
P. R.
, and
Folgado
,
J.
,
2012
, “
On the Optimal Shape of Hip Implants
,”
J. Biomech.
,
45
(
2
), pp.
239
246
.
9.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Reading Addison-Wesley Publishing
, Boston, MA.
10.
Katoozian
,
H.
,
Davy
,
D. T.
,
Arshi
,
A.
, and
Saadati
,
U.
,
2001
, “
Material Optimization of Femoral Component of Total Hip Prosthesis Using Fiber Reinforced Polymeric Composites
,”
Med. Eng. Phys.
,
23
, pp.
503
509
.
11.
Tai
,
C.-L.
,
Shih
,
C.-H.
,
Chen
,
W.-P.
,
Lee
,
S.-S.
,
Liu
,
Y.-L.
,
Hsieh
,
P.-H.
, and
Chen
,
W.-J.
,
2003
, “
Finite Element Analysis of the Cervico-Trochanteric Stemless Femoral Prosthesis
,”
Clin. Biomech.
,
18
(
6
), pp.
S53
S58
.
12.
Buroni
,
F. C.
, and
Comisso
,
P. E.
,
2004
, “
Modelado Numérico Computacional De Estruturas Óseas–Desarrollo De Uma Metodologia Y Aplicación a Uma Prótesis De Reemplazo De Cúpula Radial
,” Proyecto final, Instituto Facultad de Ingeniería-Universidad Nacional de Mar del Plata, Mar del Plata.
13.
Unnikrishnan
,
G. U.
,
Barest
,
G. D.
,
Berry
,
D. B.
,
Hussein
,
A. I.
, and
Morgan
,
E. F.
,
2013
,
ASME J. Biomech. Eng.
,
135
(
10
), p.
101007
.
14.
Dickinson
,
A. S.
,
2014
, “
Analogy of Strain Energy Density Based Bone-Remodeling Algorithm and Structural Topology Optimization
,”
ASME J. Biomech. Eng.
,
131
(
1
), p.
011012
.
15.
Colloca
,
M.
,
Ito
,
K.
, and
Rietbergen
,
B. V.
,
2014
, “
An Analytical Approach to Investigate the Evolution of Bone Volume Fraction in Bone Remodeling Simulation at the Tissue and Cell Level
,”
ASME J. Biomech. Eng.
,
136
(
3
), p.
031004
.
16.
Aznar
,
J. M. G.
,
1999
, “
Modelo De Remodelación Ósea: Análisis Numérico Y Aplicaciones Al Diseño De Fijaciones De Fracturas Del Fêmur Proximal
,” Ph.D. thesis, University of Zaragoza, Zaragoza, Spain.
17.
Garcia
,
J. M.
,
Doblaré
,
M.
, and
Cegoñino
,
J.
,
2002
, “
Bone Remodeling Simulation: A Tool for Implant Design
,”
Comput. Mater. Sci.
,
25
(
1–2
), pp.
100
114
.
18.
Jacobs
,
C. R.
,
1994
, “
Numerical Simulation of Bone Adaptation to Mechanical Loading
,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.
19.
Moreo
,
P.
,
Pérez
,
M. A.
,
García-Aznar
,
J. M.
, and
Doblaré
,
M.
,
2006
, “
Modelling the Mixed-Mode Failure of Cement–Bone Interfaces
,”
Eng. Fract. Mech.
,
73
(
10
), pp.
1379
1395
.
20.
Chanda
,
S.
,
Gupta
,
S.
, and
Pratihar
,
D. K.
,
2015
, “
A Genetic Algorithm Based Multi-Objective Shape Optimization Scheme for Cementless Femoral Implant
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
034502
.
21.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Sloof
,
T. J.
,
1987
, “
Adaptive Bone-Remodelling Theory Applied to Prosthetic-Design Analysis
,”
J. Biomech.
,
20
(
11/12
), pp.
1135
1150
.
22.
Sridhar
,
I.
,
Adie
,
P. P.
, and
Ghista
,
D. N.
,
2010
, “
Optimal Design of Customised Hip Prosthesis Using Fiber Reinforced Polymer Composites
,”
Mater. Des.
,
31
(
6
), pp.
2767
2775
.
23.
Harris
,
W. H.
,
1995
, “
The Problem Is Osteolysis
,”
Clin. Orthop. Relat. Res.
,
311
, pp.
46
53
.
24.
Harris
,
W. H.
,
2001
, “
Wear and Periprosthetic Osteolysis: The Problem
,”
Clin. Orthop. Relat. Res.
,
393
, pp.
66
70
.
25.
Beaupré
,
G. S.
,
Orr
,
T. E.
, and
Carter
,
D. R.
,
1990
, “
An Approach for Time Dependent Bone Modeling and Remodeling-Application: A Preliminary Remodeling Simulation
,”
J. Orthop. Res.
,
8
(
5
), pp.
662
670
.
26.
Martin
,
R. B.
,
2007
, “
Targeted Bone Remodeling Involves Bmu Steering as Well as Activation
,”
Bone
,
40
(
6
), pp.
1574
1580
.
27.
Tsangari
,
H.
,
Findlay
,
D. M.
, and
Fazzalari
,
N. L.
,
2007
, “
Structural and Remodeling Indices in the Cancellous Bone of the Proximal Femur Across Adulthood
,”
Bone
,
40
(
1
), pp.
211
217
.
28.
Pivonka
,
P.
,
Zimak
,
J.
,
Smith
,
D. W.
,
Gardiner
,
B. S.
,
Dunstan
,
C. R.
,
Sims
,
N. A.
,
Martin
,
T. J.
, and
Mundy
,
G. R.
,
2008
, “
Model Structure and Control of Bone Remodeling: A Theoretical Study
,”
Bone
,
43
(
2
), pp.
249
263
.
29.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
, Ann Arbor, MI.
30.
Taylor
,
M.
,
Tanner
,
K. E.
,
Freeman
,
M. A. R.
, and
Yettram
,
A. L.
,
1995
, “
Cancellous Bone Stress Surrounding the Femoral Component of a Hip Prosthesis: An Elastic-Plastic Finite Element Analysis
,”
Med. Eng. Phys.
,
17
(
7
), pp.
544
550
.
31.
Peters
,
C. L.
,
Bachus
,
K. N.
,
Craig
,
M. A.
, and
Higginbotham
,
T. O.
,
2001
, “
The Effect of Femoral Prosthesis Design on Cement Strain in Cemented Total Hip Arthroplasty
,”
J. Arthroplasty
,
16
(
2
), pp.
216
224
.
32.
Kayabasi
,
O.
, and
Ekici
,
B.
,
2008
, “
Probabilistic Design of a Newly Designed Cemented Hip Prosthesis Using Finite Element Method
,”
Mater. Des.
,
29
(
5
), pp.
963
971
.
33.
Lindalen
,
E.
,
Dahl
,
J.
,
Nordsletten
,
L.
,
Snorrason
,
F.
,
Hovik
,
O.
, and
Röhrl
,
S.
,
2012
, “
Reverse Hybrid and Cemented Hip Replacement Compared Using Radiostereometry and Dual-Energy X-Ray Absorptiometry: 43 Hips Followed for 2 Years in a Prospective Trial
,”
Acta Orthop.
,
83
(
6
), pp.
592
600
.
34.
Stucinskas
,
J.
,
Clauss
,
M.
,
Tarasevicius
,
S.
,
Wingstrand
,
H.
, and
Ilchmann
,
T.
,
2012
, “
Long-Term Femoral Bone Remodeling After Cemented Hip Arthroplasty With the Müller Straight Stem in the Operated and Nonoperated Femora
,”
J. Arthroplasty
,
27
(
6
), pp.
927
933
.
You do not currently have access to this content.