Cardiovascular disease (CVD) is the leading cause of death for Americans. As coronary artery bypass graft surgery (CABG) remains a mainstay of therapy for CVD and native vein grafts are limited by issues of supply and lifespan, an effective readily available tissue-engineered vascular graft (TEVG) for use in CABG would provide drastic improvements in patient care. Biomechanical mismatch between vascular grafts and native vasculature has been shown to be the major cause of graft failure, and therefore, there is need for compliance-matched biocompatible TEVGs for clinical implantation. The current study investigates the biaxial mechanical characterization of acellular electrospun glutaraldehyde (GLUT) vapor-crosslinked gelatin/fibrinogen cylindrical constructs, using a custom-made microbiaxial optomechanical device (MOD). Constructs crosslinked for 2, 8, and 24 hrs are compared to mechanically characterized porcine left anterior descending coronary (LADC) artery. The mechanical response data were used for constitutive modeling using a modified Fung strain energy equation. The results showed that constructs crosslinked for 2 and 8 hrs exhibited circumferential and axial tangential moduli (ATM) similar to that of the LADC. Furthermore, the 8-hrs experimental group was the only one to compliance-match the LADC, with compliance values of 0.0006±0.00018 mm Hg−1 and 0.00071±0.00027 mm Hg−1, respectively. The results of this study show the feasibility of meeting mechanical specifications expected of native arteries through manipulating GLUT vapor crosslinking time. The comprehensive mechanical characterization of cylindrical biopolymer constructs in this study is an important first step to successfully develop a biopolymer compliance-matched TEVG.

References

References
1.
Go
,
A. S.
,
Mozaffarian
,
D.
,
Roger
,
V. L.
,
Benjamin
,
E. J.
,
Berry
,
J. D.
,
Blaha
,
M. J.
,
Dai
,
S.
,
Ford
,
E. S.
,
Fox
,
C. S.
,
Franco
,
S.
,
Fullerton
,
H. J.
,
Gillespie
,
C.
,
Hailpern
,
S. M.
,
Heit
,
J. A.
,
Howard
,
V. J.
,
Huffman
,
M. D.
,
Judd
,
S. E.
,
Kissela
,
B. M.
,
Kittner
,
S. J.
,
Lackland
,
D. T.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Mackey
,
R. H.
,
Magid
,
D. J.
,
Marcus
,
G. M.
,
Marelli
,
A.
,
Matchar
,
D. B.
,
McGuire
,
D. K.
,
Mohler
,
E. R.
, 3rd,
Moy
,
C. S.
,
Mussolino
,
M. E.
,
Neumar
,
R. W.
,
Nichol
,
G.
,
Pandey
,
D. K.
,
Paynter
,
N. P.
,
Reeves
,
M. J.
,
Sorlie
,
P. D.
,
Stein
,
J.
,
Towfighi
,
A.
,
Turan
,
T. N.
,
Virani
,
S. S.
,
Wong
,
N. D.
,
Woo
,
D.
, and
Turner
,
M. B.
,
2014
, “
Heart Disease and Stroke Statistics—2014 Update: A Report From the American Heart Association
,”
Circulation
,
129
(
3
), pp.
e28
e292
.
2.
Kurobe
,
H.
,
Maxfield
,
M. W.
,
Breuer
,
C. K.
, and
Shinoka
,
T.
,
2012
, “
Concise Review: Tissue-Engineered Vascular Grafts for Cardiac Surgery: Past, Present, and Future
,”
Stem Cells Transl. Med.
,
1
(
7
), pp.
566
571
.
3.
Kannan
,
R. Y.
,
Salacinski
,
H. J.
,
Butler
,
P. E.
,
Hamilton
,
G.
, and
Seifalian
,
A. M.
,
2005
, “
Current Status of Prosthetic Bypass Grafts: A Review
,”
J. Biomed. Mater. Res. Part B
,
74
(
1
), pp.
570
581
.
4.
Rocco
,
K. A.
,
Maxfield
,
M. W.
,
Best
,
C. A.
,
Dean
,
E. W.
, and
Breuer
,
C. K.
,
2014
, “
In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review
,”
Tissue Eng. Part B
,
20
(
6
), pp.
628
640
.
5.
He
,
J.
,
Qin
,
T.
,
Liu
,
Y.
,
Li
,
X.
,
Li
,
D.
, and
Jin
,
Z.
,
2014
, “
Electrospinning of Nanofibrous Scaffolds With Continuous Structure and Material Gradients
,”
Mater. Lett.
,
137
, pp.
393
397
.
6.
Hong
,
Y.
,
Ye
,
S. H.
,
Nieponice
,
A.
,
Soletti
,
L.
,
Vorp
,
D. A.
, and
Wagner
,
W. R.
,
2009
, “
A Small Diameter, Fibrous Vascular Conduit Generated From a Poly(Ester Urethane)Urea and Phospholipid Polymer Blend
,”
Biomaterials
,
30
(
13
), pp.
2457
2467
.
7.
Nieponice
,
A.
,
Soletti
,
L.
,
Guan
,
J.
,
Deasy
,
B. M.
,
Huard
,
J.
,
Wagner
,
W. R.
, and
Vorp
,
D. A.
,
2008
, “
Development of a Tissue-Engineered Vascular Graft Combining a Biodegradable Scaffold, Muscle-Derived Stem Cells and a Rotational Vacuum Seeding Technique
,”
Biomaterials
,
29
(
7
), pp.
825
833
.
8.
Soletti
,
L.
,
Hong
,
Y.
,
Guan
,
J.
,
Stankus
,
J. J.
,
El-Kurdi
,
M. S.
,
Wagner
,
W. R.
, and
Vorp
,
D. A.
,
2010
, “
A Bilayered Elastomeric Scaffold for Tissue Engineering of Small Diameter Vascular Grafts
,”
Acta Biomater.
,
6
(
1
), pp.
110
122
.
9.
Tai
,
N. R.
,
Salacinski
,
H. J.
,
Edwards
,
A.
,
Hamilton
,
G.
, and
Seifalian
,
A. M.
,
2000
, “
Compliance Properties of Conduits Used in Vascular Reconstruction
,”
Br. J. Surg.
,
87
(
11
), pp.
1516
1524
.
10.
McClure
,
M. J.
,
Sell
,
S. A.
,
Simpson
,
D. G.
,
Walpoth
,
B. H.
, and
Bowlin
,
G. L.
,
2010
, “
A Three-Layered Electrospun Matrix to Mimic Native Arterial Architecture Using Polycaprolactone, Elastin, and Collagen: A Preliminary Study
,”
Acta Biomater.
,
6
(
7
), pp.
2422
2433
.
11.
Merkle
,
V.
,
Zeng
,
L.
,
Teng
,
W.
,
Slepian
,
M.
, and
Wu
,
X.
,
2013
, “
Gelatin Shells Strengthen Polyvinyl Alcohol Core–Shell Nanofibers
,”
Polymer
,
54
(
21
), pp.
6003
6007
.
12.
Merkle
,
V. M.
,
Zeng
,
L.
,
Slepian
,
M. J.
, and
Wu
,
X.
,
2014
, “
Core-Shell Nanofibers: Integrating the Bioactivity of Gelatin and the Mechanical Property of Polyvinyl Alcohol
,”
Biopolymers
,
101
(
4
), pp.
336
346
.
13.
Stitzel
,
J. D.
,
Pawlowski
,
K. J.
,
Wnek
,
G. E.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
,
2001
, “
Arterial Smooth Muscle Cell Proliferation on a Novel Biomimicking, Biodegradable Vascular Graft Scaffold
,”
J. Biomater. Appl.
,
16
(
1
), pp.
22
33
.
14.
Wise
,
S. G.
,
Byrom
,
M. J.
,
Waterhouse
,
A.
,
Bannon
,
P. G.
,
Weiss
,
A. S.
, and
Ng
,
M. K.
,
2011
, “
A Multilayered Synthetic Human Elastin/Polycaprolactone Hybrid Vascular Graft With Tailored Mechanical Properties
,”
Acta Biomater.
,
7
(
1
), pp.
295
303
.
15.
Bergmeister
,
H.
,
Seyidova
,
N.
,
Schreiber
,
C.
,
Strobl
,
M.
,
Grasl
,
C.
,
Walter
,
I.
,
Messner
,
B.
,
Baudis
,
S.
,
Fröhlich
,
S.
,
Marchetti-Deschmann
,
M.
,
Griesser
,
M.
,
di Franco
,
M.
,
Krssak
,
M.
,
Liska
,
R.
, and
Schima
,
H.
,
2015
, “
Biodegradable, Thermoplastic Polyurethane Grafts for Small Diameter Vascular Replacements
,”
Acta Biomater.
,
11
, pp.
104
113
.
16.
Catto
,
V.
,
Fare
,
S.
,
Cattaneo
,
I.
,
Figliuzzi
,
M.
,
Alessandrino
,
A.
,
Freddi
,
G.
,
Remuzzi
,
A.
, and
Tanzi
,
M. C.
,
2015
, “
Small Diameter Electrospun Silk Fibroin Vascular Grafts: Mechanical Properties, Ex Vivo Biodegradability, and In Vivo Biocompatibility
,”
Mater. Sci. Eng. C: Mater. Biol. Appl.
,
54
, pp.
101
111
.
17.
Hu
,
Z.-J.
,
Li
,
Z.-L.
,
Hu
,
L.-Y.
,
He
,
W.
,
Liu
,
R.-M.
,
Qin
,
Y.-S.
, and
Wang
,
S.-M.
,
2012
, “
The In Vivo Performance of Small-Caliber Nanofibrous Polyurethane Vascular Grafts
,”
BMC Cardiovasc. Disord.
,
12
(
1
), p.
115
.
18.
Matsumura
,
G.
,
Isayama
,
N.
,
Matsuda
,
S.
,
Taki
,
K.
,
Sakamoto
,
Y.
,
Ikada
,
Y.
, and
Yamazaki
,
K.
,
2013
, “
Long-Term Results of Cell-Free Biodegradable Scaffolds for In Situ Tissue Engineering of Pulmonary Artery in a Canine Model
,”
Biomaterials
,
34
(
27
), pp.
6422
6428
.
19.
Udelsman
,
B. V.
,
Khosravi
,
R.
,
Miller
,
K. S.
,
Dean
,
E. W.
,
Bersi
,
M. R.
,
Rocco
,
K.
,
Yi
,
T.
,
Humphrey
,
J. D.
, and
Breuer
,
C. K.
,
2014
, “
Characterization of Evolving Biomechanical Properties of Tissue Engineered Vascular Grafts in the Arterial Circulation
,”
J. Biomech.
,
47
(
9
), pp.
2070
2079
.
20.
Zhang
,
L.
,
Zhou
,
J.
,
Lu
,
Q.
,
Wei
,
Y.
, and
Hu
,
S.
,
2008
, “
A Novel Small-Diameter Vascular Graft: in vivo Behavior of Biodegradable Three-Layered Tubular Scaffolds
,”
Biotechnol. Bioeng.
,
99
(
4
), pp.
1007
1015
.
21.
Shinoka
,
T.
,
Shum-Tim
,
D.
,
Ma
,
P. X.
,
Tanel
,
R. E.
,
Isogai
,
N.
,
Langer
,
R.
,
Vacanti
,
J. P.
, and
Mayer
,
J. E.
, Jr.
,
1998
, “
Creation of Viable Pulmonary Artery Autografts Through Tissue Engineering
,”
J. Thorac. Cardiovasc. Surg.
,
115
(
3
), pp.
536
546
.
22.
Wang
,
S.
,
Mo
,
X. M.
,
Jiang
,
B. J.
,
Gao
,
C. J.
,
Wang
,
H. S.
,
Zhuang
,
Y. G.
, and
Qiu
,
L. J.
,
2013
, “
Fabrication of Small-Diameter Vascular Scaffolds by Heparin-Bonded P(LLA-CL) Composite Nanofibers to Improve Graft Patency
,”
Int. J. Nanomed.
,
8
, pp.
2131
2139
.
23.
Catto
,
V.
,
Fare
,
S.
,
Freddi
,
G.
, and
Tanzi
,
M. C.
,
2014
, “
Vascular Tissue Engineering: Recent Advances in Small Diameter Blood Vessel Regeneration
,”
ISRN Vasc. Med.
,
2014
, p. 923030.
24.
Nemeno-Guanzon
,
J. G.
,
Lee
,
S.
,
Berg
,
J. R.
,
Jo
,
Y. H.
,
Yeo
,
J. E.
,
Nam
,
B. M.
,
Koh
,
Y.-G.
, and
Lee
,
J. I.
,
2012
, “
Trends in Tissue Engineering for Blood Vessels
,”
J. Biomed. Biotechnol.
,
2012
, p.
956345
.
25.
Salles
,
C. A.
,
Buffolo
,
E.
,
Andrade
,
J. C.
,
Palma
,
J. H.
,
Silva
,
R. R.
,
Santiago
,
R.
,
Casagrande
,
I. S.
, and
Moreira
,
M. C.
,
1998
, “
Mitral Valve Replacement With Glutaraldehyde Preserved Aortic Allografts
,”
Eur. J. Cardio-Thorac. Surg.
,
13
(
2
), pp.
135
143
.
26.
Huang
,
Z.-M.
,
Zhang
,
Y. Z.
,
Ramakrishna
,
S.
, and
Lim
,
C. T.
,
2004
, “
Electrospinning and Mechanical Characterization of Gelatin Nanofibers
,”
Polymer
,
45
(
15
), pp.
5361
5368
.
27.
Kumar
,
V. A.
,
Caves
,
J. M.
,
Haller
,
C. A.
,
Dai
,
E.
,
Liu
,
L.
,
Grainger
,
S.
, and
Chaikof
,
E. L.
,
2013
, “
Acellular Vascular Grafts Generated From Collagen and Elastin Analogs
,”
Acta Biomater.
,
9
(
9
), pp.
8067
8074
.
28.
L'Heureux
,
N.
,
Paquet
,
S.
,
Labbe
,
R.
,
Germain
,
L.
, and
Auger
,
F. A.
,
1998
, “
A Completely Biological Tissue-Engineered Human Blood Vessel
,”
FASEB J.
,
12
(
1
), pp.
47
56
.
29.
Matthews
,
J. A.
,
Wnek
,
G. E.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
,
2002
, “
Electrospinning of Collagen Nanofibers
,”
Biomacromolecules
,
3
(
2
), pp.
232
238
.
30.
McManus
,
M. C.
,
Boland
,
E. D.
,
Koo
,
H. P.
,
Barnes
,
C. P.
,
Pawlowski
,
K. J.
,
Wnek
,
G. E.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
,
2006
, “
Mechanical Properties of Electrospun Fibrinogen Structures
,”
Acta Biomater.
,
2
(
1
), pp.
19
28
.
31.
Nivison-Smith
,
L.
,
Rnjak
,
J.
, and
Weiss
,
A. S.
,
2010
, “
Synthetic Human Elastin Microfibers: Stable Crosslinked Tropoelastin and Cell Interactive Constructs for Tissue Engineering Applications
,”
Acta Biomater.
,
6
(
2
), pp.
354
359
.
32.
Perumcherry
,
S. R.
,
Chennazhi
,
K. P.
,
Nair
,
S. V.
,
Menon
,
D.
, and
Afeesh
,
R.
,
2011
, “
A Novel Method for the Fabrication of Fibrin-Based Electrospun Nanofibrous Scaffold for Tissue-Engineering Applications
,”
Tissue Eng. Part C
,
17
(
11
), pp.
1121
1130
.
33.
Boland
,
E. D.
,
Matthews
,
J. A.
,
Pawlowski
,
K. J.
,
Simpson
,
D. G.
,
Wnek
,
G. E.
, and
Bowlin
,
G. L.
,
2004
, “
Electrospinning Collagen and Elastin: Preliminary Vascular Tissue Engineering
,”
Front. Biosci.: J. Virtual Library
,
9
, pp.
1422
1432
.
34.
McClure
,
M. J.
,
Sell
,
S.
,
Simpson
,
D.
, and
Bowlin
,
G.
,
2009
, “
Electrospun Polydioxanone, Elastin, and Collagen Vascular Scaffolds: Uniaxial Cyclic Distension
,”
J. Eng. Fibers Fabr.
,
4
(
2
), pp.
18
25
.
35.
Wong
,
C. S.
,
Liu
,
X.
,
Xu
,
Z.
,
Lin
,
T.
, and
Wang
,
X.
,
2013
, “
Elastin and Collagen Enhances Electrospun Aligned Polyurethane as Scaffolds for Vascular Graft
,”
J. Mater. Sci. Mater. Med.
,
24
(
8
), pp.
1865
1874
.
36.
Zeugolis
,
D. I.
,
Khew
,
S. T.
,
Yew
,
E. S.
,
Ekaputra
,
A. K.
,
Tong
,
Y. W.
,
Yung
,
L. Y.
,
Hutmacher
,
D. W.
,
Sheppard
,
C.
, and
Raghunath
,
M.
,
2008
, “
Electro-Spinning of Pure Collagen Nano-Fibres—Just an Expensive Way to Make Gelatin?
Biomaterials
,
29
(
15
), pp.
2293
2305
.
37.
McClure
,
M. J.
,
Sell
,
S.
,
Barnes
,
C.
,
Bowen
,
W.
, and
Bowlin
,
G.
,
2008
, “
Cross-Linking Electrospun Polydioxanone-Soluble Elastin Blends: Material Characterization
,”
J. Eng. Fibers Fabr.
,
3
(
1
), pp.
1
10
.
38.
Zhang
,
S.
,
Huang
,
Y.
,
Yang
,
X.
,
Mei
,
F.
,
Ma
,
Q.
,
Chen
,
G.
,
Ryu
,
S.
, and
Deng
,
X.
,
2009
, “
Gelatin Nanofibrous Membrane Fabricated by Electrospinning of Aqueous Gelatin Solution for Guided Tissue Regeneration
,”
J. Biomed. Mater. Res. Part A
,
90
(
3
), pp.
671
679
.
39.
Sell
,
S. A.
,
Wolfe
,
P. S.
,
Garg
,
K.
,
McCool
,
J. M.
,
Rodriguez
,
I. A.
, and
Bowlin
,
G. L.
,
2010
, “
The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues
,”
Polymers
,
2
(
4
), pp.
522
553
.
40.
Grover
,
C. N.
,
Gwynne
,
J. H.
,
Pugh
,
N.
,
Hamaia
,
S.
,
Farndale
,
R. W.
,
Best
,
S. M.
, and
Cameron
,
R. E.
,
2012
, “
Crosslinking and Composition Influence the Surface Properties, Mechanical Stiffness and Cell Reactivity of Collagen-Based Films
,”
Acta Biomater.
,
8
(
8
), pp.
3080
3090
.
41.
Rose
,
J.
,
Pacelli
,
S.
,
Haj
,
A.
,
Dua
,
H.
,
Hopkinson
,
A.
,
White
,
L.
, and
Rose
,
F.
,
2014
, “
Gelatin-Based Materials in Ocular Tissue Engineering
,”
Materials
,
7
(
4
), pp.
3106
3135
.
42.
Gorgieva
,
S.
, and
Kokol
,
V.
,
2011
, “Collagen-vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives,”
Biomaterials Applications for Nanomedicine
, R. Pignatello, ed.,
INTECH
,
Rijeka, Croatia
.
43.
Balasubramanian
,
P.
,
Prabhakaran
,
M. P.
,
Kai
,
D.
, and
Ramakrishna
,
S.
,
2013
, “
Human Cardiomyocyte Interaction With Electrospun Fibrinogen/Gelatin Nanofibers for Myocardial Regeneration
,”
J. Biomater. Sci. Polym. Ed.
,
24
(
14
), pp.
1660
1675
.
44.
Ardila
,
D. C.
,
Tamimi
,
E.
,
Danford
,
F. L.
,
Haskett
,
D. G.
,
Kellar
,
R. S.
,
Doetschman
,
T.
, and
Vande Geest
,
J. P.
,
2014
, “
TGFbeta2 Differentially Modulates Smooth Muscle Cell Proliferation and Migration in Electrospun Gelatin-Fibrinogen Constructs
,”
Biomaterials
,
37C
, pp.
164
173
.
45.
Ghista
,
D.
, and
Kabinejadian
,
F.
,
2013
, “
Coronary Artery Bypass Grafting Hemodynamics and Anastomosis Design: A Biomedical Engineering Review
,”
Biomed. Eng. Online
,
12
(
1
), p.
129
.
46.
Amoroso
,
N. J.
,
D'Amore
,
A.
,
Hong
,
Y.
,
Rivera
,
C. P.
,
Sacks
,
M. S.
, and
Wagner
,
W. R.
,
2012
, “
Microstructural Manipulation of Electrospun Scaffolds for Specific Bending Stiffness for Heart Valve Tissue Engineering
,”
Acta Biomater.
,
8
(
12
), pp.
4268
4277
.
47.
Liu
,
S.
,
Dong
,
C.
,
Lu
,
G.
,
Lu
,
Q.
,
Li
,
Z.
,
Kaplan
,
D. L.
, and
Zhu
,
H.
,
2013
, “
Bilayered Vascular Grafts Based on Silk Proteins
,”
Acta Biomater.
,
9
(
11
), pp.
8991
9003
.
48.
Naito
,
Y.
,
Lee
,
Y. U.
,
Yi
,
T.
,
Church
,
S. N.
,
Solomon
,
D.
,
Humphrey
,
J. D.
,
Shin'oka
,
T.
, and
Breuer
,
C. K.
,
2014
, “
Beyond Burst Pressure: Initial Evaluation of the Natural History of the Biaxial Mechanical Properties of Tissue-Engineered Vascular Grafts in the Venous Circulation Using a Murine Model
,”
Tissue Eng. Part A
,
20
(
1–2
), pp.
346
355
.
49.
Wang
,
F.
,
Mohammed
,
A.
,
Li
,
C.
,
Ge
,
P.
,
Wang
,
L.
, and
King
,
M. W.
,
2014
, “
Degradable/Non-Degradable Polymer Composites for In-Situ Tissue Engineering Small Diameter Vascular Prosthesis Application
,”
Biomed. Mater. Eng.
,
24
(
6
), pp.
2127
2133
.
50.
Chung
,
J.
, and
Li
,
J. K.
,
2004
, “
Hemodynamic Simulation of Vascular Prosthesis Altering Pulse Wave Propagation
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
(
IEMBS '04
), Sept. 1–5, Vol.
5
, pp.
3678
3680
.
51.
Keyes
,
J. T.
,
Lockwood
,
D. R.
,
Utzinger
,
U.
,
Montilla
,
L. G.
,
Witte
,
R. S.
, and
Vande Geest
,
J. P.
,
2013
, “
Comparisons of Planar and Tubular Biaxial Tensile Testing Protocols of the Same Porcine Coronary Arteries
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1579
1591
.
52.
Haskett
,
D.
,
Speicher
,
E.
,
Fouts
,
M.
,
Larson
,
D.
,
Azhar
,
M.
,
Utzinger
,
U.
, and
Vande Geest
,
J. P.
,
2012
, “
The Effects of Angiotensin II on the Coupled Microstructural and Biomechanical Response of C57BL/6 Mouse Aorta
,”
J. Biomech.
,
45
(
2
), pp.
722
729
.
53.
Haskett
,
D. G.
,
Azhar
,
M.
,
Utzinger
,
U.
, and
Vande Geest
,
J. P.
,
2013
, “
Progressive Alterations in Microstructural Organization and Biomechanical Response in the apoE Mouse Model of Aneurysm
,”
Biomatter
,
3
(
2
), p.
e24648
.
54.
Haskett
,
D. G.
,
Doyle
,
J.
,
Gard
,
C.
,
Chen
,
H.
,
Ball
,
C.
,
Estabrook
,
M. A.
,
Encinas
,
A. C.
,
Dietz
,
H. C.
,
Utzinger
,
U.
,
Vande Geest
,
J. P.
, and
Axzhar
,
M.
,
2012
, “
Altered Tissue Behavior of Non-Aneurysmal Descending Thoracic Aorta in the Mouse Model of Marfan Syndrome
,”
Cell Tissue Res.
,
347
(
1
), pp.
267
277
.
55.
Keyes
,
J. T.
,
Borowicz
,
S. M.
,
Rader
,
J. H.
,
Utzinger
,
U.
,
Azhar
,
M.
, and
Vande Geest
,
J. P.
,
2011
, “
Design and Demonstration of a Microbiaxial Optomechanical Device for Multiscale Characterization of Soft Biological Tissues With Two-Photon Microscopy
,”
Microsc. Microanal.
,
17
(
2
), pp.
167
175
.
56.
Keyes
,
J. T.
,
Utzinger
,
U.
, and
Vande Geest
,
J. P.
,
2011
, “
Adaptation of a Two-Photon-Microscope-Interfacing Planar Biaxial Testing Device for the Microstructural and Macroscopic Characterization of Small Tubular Tissue Specimens
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
075001
.
57.
Hearn
,
E. J.
,
1997
, “
Thick Cylinders
,”
Mechanics of Materials 1
,
3rd ed.
,
E. J.
Hearn
, ed.,
Butterworth-Heinemann
,
Oxford
, pp.
215
253
.
58.
Haskett
,
D.
,
Johnson
,
G.
,
Zhou
,
A.
,
Utzinger
,
U.
, and
Vande Geest
,
J.
,
2010
, “
Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
725
736
.
59.
Mitra
,
T.
,
Sailakshmi
,
G.
,
Gnanamani
,
A.
, and
Mandal
,
A. B.
,
2011
, “
Cross-Linking With Acid Chlorides Improves Thermal and Mechanical Properties of Collagen Based Biopolymer Material
,”
Thermochim. Acta
,
525
(
1–2
), pp.
50
55
.
60.
Dong
,
B.
,
Arnoult
,
O.
,
Smith
,
M. E.
, and
Wnek
,
G. E.
,
2009
, “
Electrospinning of Collagen Nanofiber Scaffolds From Benign Solvents
,”
Macromol. Rapid Commun.
,
30
(
7
), pp.
539
542
.
61.
Caulk
,
A. W.
,
Nepiyushchikh
,
Z. V.
,
Shaw
,
R.
,
Dixon
,
J. B.
, and
Gleason
,
R. L.
,
2015
, “
Quantification of the Passive and Active Biaxial Mechanical Behaviour and Microstructural Organization of Rat Thoracic Ducts
,”
J. R. Soc. Interface
,
12
(
108
), p.
20150280
.
62.
Wan
,
W.
,
Dixon
,
J. B.
, and
Gleason
,
J.
, Jr.
, and
Rudolph
,
L.
,
2012
, “
Constitutive Modeling of Mouse Carotid Arteries Using Experimentally Measured Microstructural Parameters
,”
Biophys. J.
,
102
(
12
), pp.
2916
2925
.
63.
Keyes
,
J. T.
,
Lockwood
,
D. R.
,
Simon
,
B. R.
, and
Vande Geest
,
J. P.
,
2013
, “
Deformationally Dependent Fluid Transport Properties of Porcine Coronary Arteries Based on Location in the Coronary Vasculature
,”
J. Mech. Behav. Biomed Mater.
,
17
, pp.
296
306
.
64.
Dahl
,
S. L. M.
,
Vaughn
,
M. E.
,
Hu
,
J.-J.
,
Driessen
,
N. J. B.
,
Baaijens
,
F. P. T.
,
Humphrey
,
J. D.
, and
Niklason
,
L. E.
,
2008
, “
A Microstructurally Motivated Model of the Mechanical Behavior of Tissue Engineered Blood Vessels
,”
Ann. Biomed. Eng.
,
36
(
11
), pp.
1782
1792
.
65.
Zaucha
,
M. T.
,
Gauvin
,
R.
,
Auger
,
F. A.
,
Germain
,
L.
, and
Gleason
,
R. L.
,
2011
, “
Biaxial Biomechanical Properties of Self-Assembly Tissue-Engineered Blood Vessels
,”
J. R. Soc. Interface
,
8
(
55
), pp.
244
256
.
66.
Mandru
,
M.
,
Ionescu
,
C.
, and
Chirita
,
M.
,
2009
, “
Modelling Mechanical Properties in Native and Biomimetically Formed Vascular Grafts
,”
J. Bionic Eng.
,
6
(
4
), pp.
371
377
.
67.
Telemeco
,
T. A.
,
Ayres
,
C.
,
Bowlin
,
G. L.
,
Wnek
,
G. E.
,
Boland
,
E. D.
,
Cohen
,
N.
,
Baumgarten
,
C. M.
,
Mathews
,
J.
, and
Simpson
,
D. G.
,
2005
, “
Regulation of Cellular Infiltration Into Tissue Engineering Scaffolds Composed of Submicron Diameter Fibrils Produced by Electrospinning
,”
Acta Biomater.
,
1
(
4
), pp.
377
385
.
68.
Chauvaud
,
S.
,
Jebara
,
V.
,
Chachques
,
J. C.
,
el Asmar
,
B.
,
Mihaileanu
,
S.
,
Perier
,
P.
,
Dreyfus
,
G.
,
Relland
,
J.
,
Couetil
,
J. P.
, and
Carpentier
,
A.
,
1991
, “
Valve Extension With Glutaraldehyde-Preserved Autologous Pericardium. Results in Mitral Valve Repair
,”
J. Thorac. Cardiovasc. Surg.
,
102
(
2
), pp.
171
177; Discussion 177–178
.
69.
Hunziker
,
E. B.
,
Lippuner
,
K.
, and
Shintani
,
N.
,
2014
, “
How Best to Preserve and Reveal the Structural Intricacies of Cartilaginous Tissue
,”
Matrix Biol.
,
39
, pp.
33
43
.
70.
Ramesh
,
R.
,
Kumar
,
N.
,
Sharma
,
A. K.
,
Maiti
,
S. K.
, and
Singh
,
G. R.
,
2003
, “
Acellular and Glutaraldehyde-Preserved Tendon Allografts for Reconstruction of Superficial Digital Flexor Tendon in Bovines: Part I—Clinical, Radiological and Angiographical Observations
,”
J. Vet. Med.
,
50
(
10
), pp.
511
519
.
71.
Gough
,
J. E.
,
Scotchford
,
C. A.
, and
Downes
,
S.
,
2002
, “
Cytotoxicity of Glutaraldehyde Crosslinked Collagen/Poly(Vinyl Alcohol) Films is by the Mechanism of Apoptosis
,”
J. Biomed. Mater. Res.
,
61
(
1
), pp.
121
130
.
72.
Jayakrishnan
,
A.
, and
Jameela
,
S. R.
,
1996
, “
Glutaraldehyde as a Fixative in Bioprostheses and Drug Delivery Matrices
,”
Biomaterials
,
17
(
5
), pp.
471
484
.
73.
Schmidt
,
C. E.
, and
Baier
,
J. M.
,
2000
, “
Acellular Vascular Tissues: Natural Biomaterials for Tissue Repair and Tissue Engineering
,”
Biomaterials
,
21
(
22
), pp.
2215
2231
.
74.
Zhai
,
W.
,
Zhang
,
H.
,
Wu
,
C.
,
Zhang
,
J.
,
Sun
,
X.
,
Zhang
,
H.
,
Zhu
,
Z.
, and
Chang
,
J.
,
2014
, “
Crosslinking of Saphenous Vein ECM by Procyanidins for Small Diameter Blood Vessel Replacement
,”
J. Biomed. Mater. Res. Part B
,
102
(
6
), pp.
1190
1198
.
75.
Tillman
,
B. W.
,
Yazdani
,
S. K.
,
Lee
,
S. J.
,
Geary
,
R. L.
,
Atala
,
A.
, and
Yoo
,
J. J.
,
2009
, “
The In Vivo Stability of Electrospun Polycaprolactone-Collagen Scaffolds in Vascular Reconstruction
,”
Biomaterials
,
30
(
4
), pp.
583
588
.
You do not currently have access to this content.