As part of an ongoing effort to develop verification and validation (V&V) standards for using computational fluid dynamics (CFD) in the evaluation of medical devices, we have developed idealized flow-based verification benchmarks to assess the implementation of commonly cited power-law based hemolysis models in CFD. The verification process ensures that all governing equations are solved correctly and the model is free of user and numerical errors. To perform verification for power-law based hemolysis modeling, analytical solutions for the Eulerian power-law blood damage model (which estimates hemolysis index (HI) as a function of shear stress and exposure time) were obtained for Couette and inclined Couette flow models, and for Newtonian and non-Newtonian pipe flow models. Subsequently, CFD simulations of fluid flow and HI were performed using Eulerian and three different Lagrangian-based hemolysis models and compared with the analytical solutions. For all the geometries, the blood damage results from the Eulerian-based CFD simulations matched the Eulerian analytical solutions within ∼1%, which indicates successful implementation of the Eulerian hemolysis model. Agreement between the Lagrangian and Eulerian models depended upon the choice of the hemolysis power-law constants. For the commonly used values of power-law constants (α  = 1.9–2.42 and β  = 0.65–0.80), in the absence of flow acceleration, most of the Lagrangian models matched the Eulerian results within 5%. In the presence of flow acceleration (inclined Couette flow), moderate differences (∼10%) were observed between the Lagrangian and Eulerian models. This difference increased to greater than 100% as the beta exponent decreased. These simplified flow problems can be used as standard benchmarks for verifying the implementation of blood damage predictive models in commercial and open-source CFD codes. The current study used only a power-law model as an illustrative example to emphasize the need for model verification. Similar verification problems could be developed for other types of hemolysis models (such as strain-based and energy dissipation-based methods). And since the current study did not include experimental validation, the results from the verified models do not guarantee accurate hemolysis predictions. This verification step must be followed by experimental validation before the hemolysis models can be used for actual device safety evaluations.

References

References
1.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.
2.
Heuser
,
G.
, and
Opitz
,
R.
,
1980
, “
A Couette Viscometer for Short Time Shearing of Blood
,”
Biorheology
,
17
(
1–2
), pp.
17
24
.
3.
Zhang
,
T.
,
Taskin
,
M. E.
,
Fang
,
H. B.
,
Pampori
,
A.
,
Jarvik
,
R.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2011
, “
Study of Flow-Induced Hemolysis Using Novel Couette-Type Blood-Shearing Devices
,”
Artif. Organs
,
35
(
12
), pp.
1180
1186
.
4.
Arora
,
D.
,
Behr
,
M.
, and
Pasquali
,
M.
,
2004
, “
A Tensor-Based Measure for Estimating Blood Damage
,”
Artif. Organs
,
28
(
11
), pp.
1002
1015
.
5.
de Tullio
,
M. D.
,
Nam
,
J.
,
Pascazio
,
G.
,
Balaras
,
E.
, and
Verzicco
,
R.
,
2012
, “
Computational Prediction of Mechanical Hemolysis in Aortic Valved Prostheses
,”
Eur. J. Mech. B/Fluids
,
35
, pp.
47
53
.
6.
Chen
,
Y.
, and
Sharp
,
M. K.
,
2011
, “
A Strain-Based Flow-Induced Hemolysis Prediction Model Calibrated by In Vitro Erythrocyte Deformation Measurements
,”
Artif. Organs
,
35
(
2
), pp.
145
156
.
7.
Arwatz
,
G.
, and
Smits
,
A. J.
,
2013
, “
A Viscoelastic Model of Shear-Induced Hemolysis in Laminar Flow
,”
Biorheology
,
50
(
1–2
), pp.
45
55
.
8.
Morshed
,
K. N.
,
Bark
,
D.
, Jr.
,
Forleo
,
M.
, and
Dasi
,
L. P.
,
2014
, “
Theory to Predict Shear Stress on Cells in Turbulent Blood Flow
,”
PloS One
,
9
(
8
), pp.
1
17
.
9.
Alemu
,
Y.
, and
Bluestein
,
D.
,
2007
, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.
10.
Sirois
,
E.
, and
Sun
,
W.
,
2010
, “
Computational Evaluation of Platelet Activation Induced by a Bioprosthetic Heart Valve
,”
Artif. Organs
,
35
(
2
), pp.
157
165
.
11.
Sheriff
,
J.
,
Soares
,
J. S.
,
Xenos
,
M.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2013
, “
Evaluation of Shear-Induced Platelet Activation Models Under Constant and Dynamic Shear Stress Loading Conditions Relevant to Devices
,”
Ann. Biomed. Eng.
,
41
(
6
), pp.
1279
1296
.
12.
Arvand
,
A.
,
Hormes
,
M.
, and
Reul
,
H.
,
2005
, “
A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump
,”
Artif. Organs
,
29
(
7
), pp.
531
540
.
13.
Taskin
,
M. E.
,
Fraser
,
K.
,
Zhang
,
T.
,
Gellman
,
B.
,
Fieischli
,
A.
,
Dasse
,
K. A.
,
Griffith
,
B.
, and
Wu
,
Z. J.
,
2010
, “
Computational Characterization of Flow and Hemolytic Performance of the UltraMag Blood Pump for Circulatory Support
,”
Artif. Organs
,
34
(
12
), pp.
1099
1113
.
14.
Hsu
,
U.
, and
Lu
,
P.
,
2013
, “
Dynamic Simulation and Hemolysis Evaluation of the Regurgitant Flow Over a Tilting-Disc Mechanical Heart Valve in Pulsatile Flow
,”
World J. Mech.
,
3
(
3
), pp.
160
168
.
15.
Hariharan
,
P.
,
Giarra
,
M.
,
Reddy
,
V.
,
Day
,
S. W.
,
Manning
,
K. B.
,
Deutsch
,
S.
,
Stewart
,
S. F.
,
Myers
,
M. R.
,
Berman
,
M. R.
,
Burgreen
,
G. W.
,
Paterson
,
E. G.
, and
Malinauskas
,
R. A.
,
2011
, “
Multilaboratory Particle Image Velocimetry Analysis of the FDA Benchmark Nozzle Model to Support Validation of Computational Fluid Dynamics Simulations
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
041002
.
16.
Stewart
,
S. F. C.
,
Paterson
,
E. G.
,
Burgreen
,
G. W.
,
Hariharan
,
P.
,
Giarra
,
M.
,
Reddy
,
V.
,
Day
,
S. W.
,
Manning
,
K. B.
,
Deutsch
,
S.
,
Berman
,
M. R.
,
Myers
,
M. R.
, and
Malinauskas
,
R. A.
,
2012
, “
Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of FDA's First Computational Interlaboratory Study
,”
Cardiovasc. Eng. Technol.
,
3
(
2
), pp.
139
160
.
17.
Stewart
,
S. F. C.
,
Hariharan
,
P.
,
Paterson
,
E. G.
,
Burgreen
,
G. W.
,
Reddy
,
V.
,
Day
,
S. W.
,
Giarra
,
M.
,
Manning
,
K. B.
,
Deutsch
,
S.
,
Berman
,
M. R.
,
Myers
,
M. R.
, and
Malinauskas
,
R. A.
,
2013
, “
Results of FDA's First Interlaboratory Computational Study of a Nozzle With a Sudden Contraction and Conical Diffuser
,”
Cardiovasc. Eng. Technol.
,
4
(
4
), pp.
374
391
.
18.
Herbertson
,
L.
,
Olia
,
S. E.
,
Daly
,
A. D.
,
Noatch
,
C. P.
,
Smith
,
W. A.
,
Kameneva
,
M. V.
, and
Malinauskas
,
R. A.
,
2015
, “
Multilaboratory Study of Flow-Induced Hemolysis Using the FDA Benchmark Nozzle Model
,”
Artif. Organs
,
39
(
3
), pp.
237
248
.
19.
ASME Committee PTC 60
, ANSI Standard V&V 40 (in preparation), “Draft Standard (under development)—Verification and Validation in Computational Modeling of Medical Devices,”
20.
U.S. Food and Drug Administration,
2013
, “
FDA/NIH/NSF 5th Computer Models and Validation for Medical Devices Workshop
,” Silver Spring, MD, June 11–12.
21.
U.S. FDA
,
2014
, “
Draft Guidance for Industry and Food and Drug Administration Staff—Reporting of Computational Modeling Studies in Medical Device Submissions
,” http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/default.htm
22.
Oberkampf
,
W. L.
, and
Trucano
,
T. G.
,
2007
, “
Verification and Validation Benchmarks
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2007-0853.
23.
Oberkampf
,
W. L.
, and
Trucano
,
T. G.
,
2002
, “
Verification and Validation in Computational Fluid Dynamics
,”
Prog. Aerosp. Sci.
,
38
(
3
), pp.
209
272
.
24.
The American Society of Mechanical Engineers
,
2009
, “
ASME V&V 20-2009—Standard for Verification and Validation in Computational Modeling of Fluid Dynamics and Heat Transfer
,” ASME, NY.
25.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Wu
,
C.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation
,”
ASAIO J.
,
58
(
4
), pp.
363
372
.
26.
Fill
,
B.
,
Horner
,
M.
,
Ma
,
J.
, and
Gartner
,
M.
,
2008
, “
A Comparison of Lagrangian and Eulerian Methodologies for Calculating Hemolysis
,”
ASAIO J.
,
54
, pp.
214
219
.
27.
Castro
,
M. A.
,
Olivares
,
M. C. A.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2013
, “
Realistic Comparison Between Aneurysmal Wall Shear Stress Vector and Blood Rheology in Patient-Specific Computational Hemodynamic Models
,”
Proc. SPIE
,
8672
, p.
86721Z
.
28.
Huang
,
C.
,
Chai
,
Z.
, and
Shi
,
B.
,
2013
, “
Non-Newtonian Effect on Hemodynamic Characteristics of Blood Flow in Stented Cerebral Aneurysm
,”
Commun. Comput. Phys.
,
13
(
3
), pp.
916
928
.
29.
Lacasse
,
D.
,
Garon
,
A.
, and
Pelletier
,
D.
,
2007
, “
Mechanical Hemolysis in Blood Flow: User-Independent Predictions With the Solution of a Partial Differential Equation
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
1
), pp.
1
12
.
30.
Garon
,
A.
, and
Farinas
,
M.-I.
,
2004
, “
Fast Three-Dimensional Numerical Hemolysis Approximation
,”
Artif. Organs
,
28
(
11
), pp.
1016
1025
.
31.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
32.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Mechanics
,
1st ed.
,
Cambridge University Press
,
Cambridge, UK
.
33.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
Di Benedetto
,
G.
,
D'Avenio
,
G.
, and
Barbaro
,
V.
,
2002
, “
Potential Mechanical Blood Trauma in Vascular Access Devices: A Comparison of Case Studies
,”
Int. J. Artif. Organs
,
25
(
9
), pp.
882
891
.
34.
Grigioni
,
M.
,
Morbiducci
,
U.
,
D'Avenio
,
G.
,
Benedetto
,
G. D.
, and
Gaudio
,
C. D.
,
2005
, “
A Novel Formulation for Blood Trauma Prediction by a Modified Power-Law Mathematical Model
,”
Biomech. Model. Mechanobiol.
,
4
(
4
), pp.
249
260
.
35.
Forleo
,
M.
, and
Dasi
,
L. P.
,
2014
, “
Effect of Hypertension on the Closing Dynamics and Lagrangian Blood Damage Index Measure of the B-Datum Regurgitant Jet in a Bileaflet Mechanical Heart Valve
,”
Ann. Biomed. Eng.
,
42
(
1
), pp.
110
122
.
36.
Bellofiore
,
A.
, and
Quinlan
,
N. J.
,
2011
, “
High-Resolution Measurement of the Unsteady Velocity Field to Evaluate Blood Damage Induced by a Mechanical Heart Valve
,”
Ann. Biomed. Eng.
,
39
(
9
), pp.
2417
2429
.
37.
Horner
,
M.
,
2011
, “
Cardiovascular Flow Modeling—We Need to Break Some Bad Habits
,” FDA/NHLBI/NSF Workshop on Computer Methods for Medical Devices: Validation of Computer With Nonclinical Models, Silver Spring, MD, Sept. 7–9.
38.
Paul
,
R.
,
Apel
,
J.
,
Klaus
,
S.
,
Schugner
,
F.
,
Schwindke
,
P.
, and
Reul
,
H.
,
2003
, “
Shear Stress Related Blood Damage in Laminar Couette Flow
,”
Artif. Organs
,
27
(
6
), pp.
517
529
.
39.
Picart
,
C.
,
Piau
,
J.
,
Galliard
,
H.
, and
Carpentier
,
P.
,
1998
, “
Human Blood Shear Yield Stress and Its Hematocrit Dependence
,”
J. Rheol.
,
42
(
1
), pp.
1
12
.
40.
Kameneva
,
M. V.
,
Burgreen
,
G. W.
,
Kono
,
K.
,
Repko
,
B.
,
Antaki
,
J.
, and
Umezu
,
M.
,
2004
, “
Effects of Turbulent Stresses Upon Mechanical Hemolysis: Experimental and Computational Analysis
,”
ASAIO J.
,
50
(
5
), pp.
418
423
.
41.
Ge
,
L.
,
Dasi
,
L. P.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2008
, “
Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
276
297
.
You do not currently have access to this content.