Abdominal aortic aneurysms (AAAs) evolve over time, and the vertebral column, which acts as an external barrier, affects their biomechanical properties. Mechanical interaction between AAAs and the spine is believed to alter the geometry, wall stress distribution, and blood flow, although the degree of this interaction may depend on AAAs specific configurations. In this study, we use a growth and remodeling (G&R) model, which is able to trace alterations of the geometry, thus allowing us to computationally investigate the effect of the spine for progression of the AAA. Medical image-based geometry of an aorta is constructed along with the spine surface, which is incorporated into the computational model as a cloud of points. The G&R simulation is initiated by local elastin degradation with different spatial distributions. The AAA–spine interaction is accounted for using a penalty method when the AAA surface meets the spine surface. The simulation results show that, while the radial growth of the AAA wall is prevented on the posterior side due to the spine acting as a constraint, the AAA expands faster on the anterior side, leading to higher curvature and asymmetry in the AAA configuration compared to the simulation excluding the spine. Accordingly, the AAA wall stress increases on the lateral, posterolateral, and the shoulder regions of the anterior side due to the AAA–spine contact. In addition, more collagen is deposited on the regions with a maximum diameter. We show that an image-based computational G&R model not only enhances the prediction of the geometry, wall stress, and strength distributions of AAAs but also provides a framework to account for the interactions between an enlarging AAA and the spine for a better rupture potential assessment and management of AAA patients.

References

References
1.
Darling
,
R. C.
,
Messina
,
C. R.
,
Brewster
,
D. C.
, and
Ottinger
,
L. W.
,
1977
, “
Autopsy Study of Unoperated Abdominal Aortic Aneurysms. The Case for Early Resection
,”
Circulation
,
56
(
Suppl. 3
), pp.
161
164
.
2.
Nicholls
,
S. C.
,
Gardner
,
J. B.
, and
Johansen
,
M. H. M. K.
,
1998
, “
Rupture in Small Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
28
(
5
), pp.
884
888
.
3.
Maier
,
A.
,
Gee
,
M. W.
,
Reeps
,
C.
,
Pongratz
,
J.
,
Eckstein
,
H. H.
, and
Wall
,
W. A.
,
2010
, “
A Comparison of Diameter, Wall Stress, and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3124
3134
.
4.
Shum
,
J.
,
Martufi
,
G.
,
Di Martino
,
E.
,
Washingtom
,
C. B.
,
Grisafi
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2011
, “
Quantitative Assessment of Abdominal Aortic Aneurysm Geometry
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
277
286
.
5.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.
6.
Gasser
,
T. C.
,
Auer
,
M.
,
Labruto
,
F.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2010
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms: Model Complexity Versus Predictability of Finite Element Simulations
,”
Eur. J. Vasc. Endovasc. Surg.
,
40
(
2
), pp.
176
185
.
7.
Zeinali-Davarani
,
S.
,
Sheidaei
,
A.
, and
Baek
,
S.
,
2011
, “
A Finite Element Model of Stress-Mediated Vascular Adaptation: Application to Abdominal Aortic Aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
9
), pp.
803
817
.
8.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwell
,
J. L.
, and
Kennedy
,
F. E.
,
2002
, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
,
36
(
3
), pp.
589
597
.
9.
Heng
,
M. S.
,
Fagan
,
M. J.
,
Collier
,
J. W.
,
Desai
,
G.
,
McCollum
,
P. T.
, and
Chetter
,
I. C.
,
2008
, “
Peak Wall Stress Measurement in Elective and Acute Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
47
(
1
), pp.
17
22
.
10.
Venkatasubramaniam
,
A. K.
,
Fagan
,
M. J.
,
Mehta
,
T.
,
Mylankal
,
K. J.
,
Ray
,
B.
,
Kuhan
,
G.
,
Chetter
,
I. C.
, and
McCollum
,
P. T.
,
2004
, “
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-Ruptured Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Surg.
,
28
(
2
), pp.
168
176
.
11.
Vande Geest
,
J. P.
,
Di Martino
,
E. S.
,
Bohra
,
A.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
A Biomechanics-Based Rupture Potential Index for Abdominal Aortic Aneurysm Risk Assessment: Demonstrative Application
,”
Ann. N. Y. Acad. Sci.
,
1085
, pp.
11
21
.
12.
Forsell
,
C.
,
Swedenborg
,
J.
,
Roy
,
J.
, and
Gasser
,
T. C.
,
2013
, “
The Quasi-Static Failure Properties of the Abdominal Aortic Aneurysm Wall Estimated by a Mixed Experimental-Numerical Approach
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1554
1566
.
13.
Reeps
,
C.
,
Gee
,
M.
,
Maier
,
A.
,
Gurdan
,
M.
,
Eckstein
,
H.-H.
, and
Wall
,
W. A.
,
2010
, “
The Impact of Model Assumptions on Results of Computational Mechanics in Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
51
(
3
), pp.
679
688
.
14.
Marini
,
G.
,
Maier
,
A.
,
Reeps
,
C.
,
Eckstein
,
H.-H.
,
Wall
,
W. A.
, and
Gee
,
M. W.
,
2012
, “
A Continuum Description of the Damage Process in the Arterial Wall of Abdominal Aortic Aneurysms
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
1
), pp.
87
99
.
15.
Polzer
,
S.
,
Bursa
,
J.
,
Gasser
,
T. C.
,
Staffa
,
R.
, and
Vlachovski
,
R.
,
2013
, “
A Numerical Implementation to Predict Residual Strains From the Homogeneous Stress Hypothesis With Application to Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1516
1527
.
16.
Doyle
,
B. J.
,
McGloughlin
,
T. M.
,
Miller
,
K.
,
Powell
,
J. T.
, and
Norman
,
P. E.
,
2014
, “
Regions of High Wall Stress Can Predict the Future Location of Rupture of Abdominal Aortic Aneurysm
,”
Cardiovasc. Interventional Radiol.
,
37
(
3
), pp.
815
818
.
17.
Raut
,
S. S.
,
Chandra
,
S.
,
Shum
,
J.
, and
Finol
,
E. A.
,
2013
, “
The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1459
1477
.
18.
Scotti
,
C. M.
,
Jimenez
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2008
, “
Wall Stress and Flow Dynamics in Abdominal Aortic Aneurysms: Finite Element Analysis vs. Fluid-Structure Interaction
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
3
), pp.
301
322
.
19.
Gasbarro
,
M. D.
,
Shimada
,
K.
, and
Di Martino
,
E. S.
,
2007
, “
Explicit Finite Element Method for In-Vivo Mechanics of Abdominal Aortic Aneurysm
,”
Eur. J. Comput. Mech.
,
16
(
3–4
), pp.
337
363
.
20.
Baek
,
S.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2006
, “
A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
142
149
.
21.
Watton
,
P. N.
, and
Hill
,
N. A.
,
2009
, “
Evolving Mechanical Properties of a Model of Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
,
8
(
1
), pp.
25
42
.
22.
Martufi
,
G.
, and
Gasser
,
T. C.
,
2012
, “
Turnover of Fibrillar Collagen in Soft Biological Tissue With Application to the Expansion of Abdominal Aortic Aneurysms
,”
J. R. Soc.
,
9
(
77
), pp.
3366
3377
.
23.
Valentin
,
A.
, and
Holzapfel
,
G. A.
,
2012
, “
Constrained Mixture Models as Tools for Testing Competing Hypotheses
,”
Mech. Res. Commun.
,
42
, pp.
126
133
.
24.
Zeinali-Davarani
,
S.
, and
Baek
,
S.
,
2012
, “
Medical Image-Based Simulation of Abdominal Aortic Aneurysm Growth
,”
Mech. Res. Commun.
,
42
, pp.
107
117
.
25.
Watton
,
P. N.
,
Hill
,
N. A.
, and
Heil
,
M.
,
2004
, “
A Mathematical Model for the Growth of the Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
,
3
(
2
), pp.
98
113
.
26.
Kroon
,
M.
, and
Holzapfel
,
G. A.
,
2007
, “
A Model for Saccular Cerebral Aneurysm Growth by Collagen Fibre Remodelling
,”
J. Theor. Biol.
,
247
(
4
), pp.
775
787
.
27.
Kroon
,
M.
, and
Holzapfel
,
G. A.
,
2009
, “
A Theoretical Model for Fibroblast-Controlled Growth of Saccular Cerebral Aneurysms
,”
J. Theor. Biol.
,
257
(
1
), pp.
73
83
.
28.
Hariton
,
I.
,
deBotton
,
G.
,
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2007
, “
Stress-Driven Collagen Fiber Remodeling in Arterial Walls
,”
Biomech. Model. Mechanobiol.
,
6
(
3
), pp.
163
175
.
29.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Methods Appl. Sci.
,
12
(
3
), pp.
407
430
.
30.
Dupay
,
A. C.
,
2012
, “
Investigation of Surface Evolution for Abdominal Aortic Aneurysms Interacting With Surrounding Tissues
,” MSc. thesis, Michigan State University, East Lansing, MI.
31.
Zeinali-Davarani
,
S.
,
Raguin
,
L. G.
,
Vorp
,
D. A.
, and
Baek
,
S.
,
2011
, “
Identification of In Vivo Material and Geometric Parameters of a Human Aorta: Toward Patient-Specific Modeling of Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
,
10
(
5
), pp.
689
699
.
32.
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2012
, “
Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms
,”
J. Biomech.
,
45
(
5
), pp.
805
814
.
33.
Di Achille
,
P.
,
Celi
,
S.
,
Di Puccio
,
F.
, and
Forte
,
P.
,
2011
, “
Anisotropic AAA: Computational Comparison Between Four and Two Fiber Family Material Models
,”
J. Biomech.
,
44
(
13
), pp.
2418
2426
.
34.
Martufi
,
G.
,
Auer
,
M.
,
Roy
,
J.
,
Swedenborg
,
J.
,
Sakalihasan
,
N.
,
Panuccio
,
G.
, and
Gasser
,
T. C.
,
2013
, “
Multidimensional Growth Measurements of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
58
(
3
), pp.
748
755
.
35.
Wriggers
,
P.
,
2006
,
Computational Contact Mechanics
,
2nd ed.
,
Springer
,
The Netherlands
.
36.
Doyle
,
B. J.
,
Callanan
,
A.
,
Burke
,
P. E.
,
Grace
,
P. A.
,
Walsh
,
M. T.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
,
2009
, “
Vessel Asymmetry as an Additional Diagnostic Tool in the Assessment of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
49
(
2
), pp.
443
454
.
37.
Rissland
,
P.
,
Alemu
,
Y.
,
Einav
,
S.
,
Ricotta
,
J.
, and
Bluestein
,
D.
,
2009
, “
Abdominal Aortic Aneurysm Risk of Rupture: Patient-Specific FSI Simulations Using Anisotropic Model
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
031001
.
38.
Rodrguez
,
J. F.
,
Ruiz
,
C.
,
Doblaré
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021023
.
39.
Raghavan
,
M. L.
,
Vorp
,
D. A.
,
Federle
,
M. P.
,
Makaroun
,
M. S.
, and
Webster
,
M. W.
,
2000
, “
Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
31
(
4
), pp.
760
769
.
40.
Xenos
,
M.
,
Rambhia
,
S. H.
,
Alemu
,
Y.
,
Einav
,
S.
,
Labropoulos
,
N.
,
Tassiopoulos
,
A.
,
Ricotta
,
J. J.
, and
Bluestein
,
D.
,
2010
, “
Patient-Based Abdominal Aortic Aneurysm Rupture Risk Prediction With Fluid Structure Interaction Modeling
,”
Ann. Biomed. Eng.
,
38
(
11
), pp.
3323
3337
.
41.
Ruiz
,
D. S. M.
,
Yilmaz
,
H.
,
Dehdashti
,
A. R.
,
Alimenti
,
A.
,
Tribolet
,
N.
, and
Rüfenacht
,
D. A.
,
2006
, “
The Perianeurysmal Environment: Influence on Saccular Aneurysm Shape and Rupture
,”
Am. J. Neuroradiol.
,
27
(
3
), pp.
504
512
.
42.
Sugiu
,
K.
,
Jean
,
B.
,
Ruiz
,
D. S. M.
,
Martin
,
J. B.
,
Delavelle
,
J.
, and
Rüfenacht
,
D. A.
,
2000
, “
Influence of the Perianeurysmal Environment on Rupture of Cerebral Aneurysms. Preliminary Observation
,”
Interventional Neuroradiol.
,
6
(
Suppl. 1
), pp.
65
70
.
43.
Humphrey
,
J. D.
, and
Na
,
S.
,
2002
, “
Elastodynamics and Arterial Wall Stress
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
509
523
.
44.
Liu
,
Y.
,
Zhang
,
W.
, and
Kassab
,
G. S.
,
2008
, “
Effects of Myocardial Constraint on the Passive Mechanical Behaviors of the Coronary Vessel Wall
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
294
(
1
), pp.
H514
H523
.
45.
Steelman
,
S. M.
,
Wu
,
Q.
,
Wagner
,
H. P.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
,
2010
, “
Perivascular Tethering Modulates the Geometry and Biomechanics of Cerebral Arterioles
,”
J. Biomech.
,
43
(
14
), pp.
2717
2721
.
46.
Kim
,
J.
,
Peruski
,
B. K.
,
Hunley
,
S. C.
,
Kwon
,
S. T.
, and
Baek
,
S.
,
2013
, “
Influence of Surrounding Tissues on Biomechanics of Aortic Wall
,”
Int. J. Exp. Comput. Biomech.
,
2
(
2
), pp.
105
117
.
47.
Gharahi
,
H.
,
Zambrano
,
B.
,
Lim
,
C.
,
Choi
,
J.
,
Lee
,
W.
, and
Baek
,
S.
,
2015
, “
On Growth Measurements of Abdominal Aortic Aneurysms Using Maximally Inscribed Spheres
,”
Med. Eng. Phys.
,
37
(
7
), pp.
683
691
.
48.
Vernerey
,
F.
, and
Farsad
,
M.
,
2011
, “
A Constrained Mixture Approach to Mechano-Sensing and Force Generation in Contractile Cells
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1683
1699
.
49.
Lopez-Candales
,
A.
,
Holmes
,
D. R.
,
Liao
,
S.
,
Scott
,
M. J.
,
Wickline
,
S. A.
, and
Thompson
,
R. W.
,
1997
, “
Decreased Vascular Smooth Muscle Cell Density in Medial Degeneration of Human Abdominal Aortic Aneurysms
,”
Am. J. Pathol.
,
150
(
3
), pp.
993
1007
.
50.
Vande Geest
,
J. P.
,
Wang
,
D. H. J.
,
Wisniewski
,
S. R.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Towards a Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
34
(
7
), pp.
1098
1106
.
51.
Di Martino
,
E. S.
,
Bohra
,
A.
,
Vande Geest
,
J. P.
,
Gupta
,
N.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Biomechanical Properties of Ruptured Versus Electively Repaired Abdominal Aortic Aneurysm Wall Tissue
,”
J. Vasc. Surg.
,
43
(
3
), pp.
570
576
.
52.
Veldenz
,
H. C.
,
Schwarcz
,
T. H.
,
Endean
,
E. D.
,
Pilcher
,
D. B.
,
Dorbin
,
P. B.
, and
Hyde
,
G. L.
,
1994
, “
Morphology Predicts Rapid Growth of Small Abdominal Aortic Aneurysms
,”
Ann. Vasc. Surg.
,
8
(
1
), pp.
10
13
.
53.
Sacks
,
M. S.
,
Vorp
,
D. A.
,
Raghavan
,
M. L.
,
Federle
,
M. P.
, and
Webster
,
M. W.
,
1999
, “
In Vivo Three-Dimensional Surface Geometry of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
469
479
.
54.
Giannoglou
,
G.
,
Giannakoulas
,
G.
,
Soulis
,
J.
,
Chatzizisis
,
Y.
,
Perdikides
,
T.
,
Melas
,
N.
,
Parcharidis
,
G.
, and
Louridas
,
G.
,
2006
, “
Predicting the Risk of Rupture of Abdominal Aortic Aneurysms by Utilizing Various Geometrical Parameters: Revisiting the Diameter Criterion
,”
Angiology
,
57
(
4
), pp.
487
494
.
55.
Doyle
,
B. J.
,
Cloonan
,
A. J.
,
Walsh
,
M. T.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
,
2010
, “
Identification of Rupture Locations in Patient-Specific Abdominal Aortic Aneurysms Using Experimental and Computational Techniques
,”
J. Biomech.
,
43
(
7
), pp.
1408
1416
.
56.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.
57.
Vorp
,
D. A.
, and
Vande Geest
,
J. P.
,
2005
, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture
,”
Arterioscler., Thromb., Vasc. Biol.
,
25
(
8
), pp.
1558
1566
.
58.
Xenos
,
M.
,
Rambhia
,
S.
,
Alemu
,
Y.
,
Einav
,
S.
,
Ricotta
,
J. J.
,
Labropoulos
,
N.
,
Tassiopoulos
,
A.
, and
Bluestein
,
D.
,
2010
, “
Patient Based Abdominal Aortic Aneurysm Rupture Risk Prediction Combining Clinical Visualizing Modalities With Fluid Structure Interaction Numerical Simulations
,”
32nd Annual International Conference of the IEEE EMBS Buenos Aires
.
59.
Seyedsalehi
,
S.
,
Zhang
,
L.
,
Choi
,
J.
, and
Baek
,
S.
, “
Prior Distribution of Material Parameters for a Computational Model of the Abdominal Aorta
,”
ASME J. Biomech. Eng.
(to be published).
60.
Farsad
,
M.
,
Zambrano
,
B.
, and
Baek
,
S.
,
2015
, “
Data-Guided Growth and Remodeling Model of Abdominal Aortic Aneurysm Accounting for the Bio-Chemical Effects of Intraluminal Thrombus
,”
Computational Biomechanics for Medicine, New Approaches and New Applications
,
Springer International Publishing
, pp.
13
23
.
You do not currently have access to this content.