Dynamic behaviors of the single-incision sling (SIS) to correct urethral hypermobility are investigated via dynamic biomechanical analysis using a computational model of the female pelvis, developed from a female subject's high-resolution magnetic resonance (MR) images. The urethral hypermobility is simulated by weakening the levator ani muscle in the pelvic model. Four positions along the posterior urethra (proximal, midproximal, middle, and mid-distal) were considered for sling implantation. The α-angle, urethral excursion angle, and sling–urethra interaction force generated during Valsalva maneuver were quantitatively characterized to evaluate the effect of the sling implantation position on treatment outcomes and potential complications. Results show concern for overcorrection with a sling implanted at the bladder neck, based on a relatively larger sling–urethra interaction force of 1.77 N at the proximal implantation position (compared with 0.25 N at mid-distal implantation position). A sling implanted at the mid-distal urethral location provided sufficient correction (urethral excursion angle of 23.8 deg after mid-distal sling implantation versus 24.4 deg in the intact case) with minimal risk of overtightening and represents the optimal choice for sling surgery. This study represents the first effort utilizing a comprehensive pelvic model to investigate the performance of an implanted sling to correct urethral hypermobility. The computational modeling approach presented in the study can also be used to advance presurgery planning, sling product design, and to enhance our understanding of various surgical risk factors which are difficult to obtain in clinical practice.

References

References
1.
Chong
,
E. C.
,
Khan
,
A. A.
, and
Anger
,
J. T.
,
2011
, “
The Financial Burden of Stress Urinary Incontinence Among Women in the United States
,”
Curr. Urol. Rep.
,
12
(
5
), pp.
358
362
.10.1007/s11934-011-0209-x
2.
Wu
,
J. M.
,
Kawasaki
,
A.
,
Hundley
,
A. F.
,
Dieter
,
A. A.
,
Myers
,
E. R.
, and
Sung
,
V. W.
,
2011
, “
Predicting the Number of Women Who Will Undergo Incontinence and Prolapse Surgery, 2010 to 2050
,”
Am. J. Obstet. Gynecol.
,
205
(
3
), pp.
e231
e235
.10.1016/j.ajog.2011.03.046
3.
Karateke
,
A.
,
Haliloglu
,
B.
,
Cam
,
C.
, and
Sakalli
,
M.
,
2009
, “
Comparison of TVT and TVT-O in Patients With Stress Urinary Incontinence: Short-Term Cure Rates and Factors Influencing the Outcome. A Prospective Randomised Study
,”
Aust. N. Z. J. Obstet. Gynaecol.
,
49
(
1
), pp.
99
105
.10.1111/j.1479-828X.2009.00957.x
4.
Crystle
,
C. D.
,
Charme
,
L. S.
, and
Copeland
,
W. E.
,
1971
, “
Q-Tip Test in Stress Urinary Incontinence
,”
Obstet. Gynecol.
,
38
(
2
), pp.
313
315
.
5.
Molden
,
S. M.
, and
Lucente
,
V. R.
,
2008
, “
New Minimally Invasive Slings: TVT SECUR
,”
Curr. Urol. Rep.
,
9
(
5
), pp.
358
361
.10.1007/s11934-008-0062-8
6.
Bernasconi
,
F.
,
Napolitano
,
V.
,
Natale
,
F.
,
Leone
,
V.
,
Lijoi
,
D.
, and
Cervigni
,
M.
,
2012
, “
TVT SECUR™ System: Final Results of a Prospective, Observational, Multicentric Study
,”
Int. Urogynecol. J.
,
23
(
1
), pp.
93
98
.10.1007/s00192-011-1520-2
7.
Oliveira
,
R.
,
Resende
,
A.
,
Silva
,
C.
,
Dinis
,
P.
, and
Cruz
,
F.
,
2014
, “
Mini-Arc for the Treatment of Female Stress Urinary Incontinence: Long-Term Prospective Evaluation by Patient Reported Outcomes
,”
ISRN Urol.
,
2014
, p.
659383
.10.1155/2014/659383
8.
Cornu
,
J.-N.
,
Lizée
,
D.
,
Sèbe
,
P.
,
Peyrat
,
L.
,
Ciofu
,
C.
,
Cussenot
,
O.
, and
Haab
,
F.
,
2012
, “
TVT SECUR Single-Incision Sling After 5 Years of Follow-Up: The Promises Made and the Promises Broken
,”
Eur. Urol.
,
62
(
4
), pp.
737
738
.10.1016/j.eururo.2012.06.054
9.
Revicky
,
V.
, and
Tincello
,
D. G.
,
2014
, “
New Surgical Approaches for Urinary Incontinence in Women
,”
Maturitas
,
77
(
3
), pp.
239
242
.10.1016/j.maturitas.2013.12.008
10.
Costantini
,
E.
,
Lazzeri
,
M.
, and
Porena
,
M.
,
2007
, “
Managing Complications After Midurethral Sling for Stress Urinary Incontinence
,”
EAU-EBU Update Ser.
,
5
(
6
), pp.
232
240
.10.1016/j.eeus.2007.07.004
11.
Feiner
,
B.
, and
Maher
,
C.
,
2010
, “
Vaginal Mesh Contraction: Definition, Clinical Presentation, and Management
,”
Obstet. Gynecol.
,
115
(
2 Pt. 1
), pp.
325
330
.10.1097/AOG.0b013e3181cbca4d
12.
Kociszewski
,
J.
,
Rautenberg
,
O.
,
Kolben
,
S.
,
Eberhard
,
J.
,
Hilgers
,
R.
, and
Viereck
,
V.
,
2010
, “
Tape Functionality: Position, Change in Shape, and Outcome After TVT Procedure—Mid-Term Results
,”
Int. Urogynecol. J.
,
21
(
7
), pp.
795
800
.10.1007/s00192-010-1119-z
13.
Boyadzhyan
,
L.
,
Raman
,
S. S.
, and
Raz
,
S.
,
2008
, “
Role of Static and Dynamic MR Imaging in Surgical Pelvic Floor Dysfunction 1
,”
Radiographics
,
28
(
4
), pp.
949
967
.10.1148/rg.284075139
14.
Rostaminia
,
G.
, and
Abramowitch
,
S.
,
2015
, “
Finite Element Modeling in Female Pelvic Floor Medicine: A Literature Review
,”
Curr. Obstet. Gynecol. Rep.
,
4
(
2
), pp.
125
131
.10.1007/s13669-015-0115-1
15.
Chen
,
L.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O. L.
,
2009
, “
A 3D Finite Element Model of Anterior Vaginal Wall Support to Evaluate Mechanisms Underlying Cystocele Formation
,”
J. Biomech.
,
42
(
10
), pp.
1371
1377
.10.1016/j.jbiomech.2009.04.043
16.
Chen
,
Z.-W.
,
Joli
,
P.
,
Feng
,
Z.-Q.
,
Rahim
,
M.
,
Pirró
,
N.
, and
Bellemare
,
M.-E.
,
2015
, “
Female Patient-Specific Finite Element Modeling of Pelvic Organ Prolapse (POP)
,”
J. Biomech.
,
48
(
2
), pp.
238
245
.10.1016/j.jbiomech.2014.11.039
17.
Luo
,
J.
,
Chen
,
L.
,
Fenner
,
D. E.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2015
, “
A Multi-Compartment 3-D Finite Element Model of Rectocele and Its Interaction With Cystocele
,”
J. Biomech.
,
48
(
9
), pp.
1580
1586
.10.1016/j.jbiomech.2015.02.041
18.
Jing
,
D.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O. L.
,
2012
, “
A Subject-Specific Anisotropic Visco-Hyperelastic Finite Element Model of Female Pelvic Floor Stress and Strain During the Second Stage of Labor
,”
J. Biomech.
,
45
(
3
), pp.
455
460
.10.1016/j.jbiomech.2011.12.002
19.
Parente
,
M.
,
Jorge
,
R. N.
,
Mascarenhas
,
T.
,
Fernandes
,
A.
, and
Martins
,
J.
,
2008
, “
Deformation of the Pelvic Floor Muscles During a Vaginal Delivery
,”
Int. Urogynecol. J.
,
19
(
1
), pp.
65
71
.10.1007/s00192-007-0388-7
20.
Brandão
,
S.
,
Parente
,
M.
,
Mascarenhas
,
T.
,
da Silva
,
A. R. G.
,
Ramos
,
I.
, and
Jorge
,
R. N.
,
2015
, “
Biomechanical Study on the Bladder Neck and Urethral Positions: Simulation of Impairment of the Pelvic Ligaments
,”
J. Biomech.
,
48
(
2
), pp.
217
223
.10.1016/j.jbiomech.2014.11.045
21.
Sendag
,
F.
,
Vidinli
,
H.
,
Kazandi
,
M.
,
Itil
,
I. M.
,
Askar
,
N.
,
Vidinli
,
B.
, and
Pourbagher
,
A.
,
2003
, “
Role of Perineal Sonography in the Evaluation of Patients With Stress Urinary Incontinence
,”
Aust. N. Z. J. Obstet. Gynaecol.
,
43
(
1
), pp.
54
57
.10.1046/j.0004-8666.2003.00012.x
22.
Zhang
,
Y.
,
Sweet
,
R. M.
,
Metzger
,
G. J.
,
Burke
,
D.
,
Erdman
,
A. G.
, and
Timm
,
G. W.
,
2009
, “
Advanced Finite Element Mesh Model of Female SUI Research During Physical and Daily Activities
,”
Stud. Health Technol. Inf.
,
142
, pp.
447
452
.10.3233/978-1-58603-964-6-447
23.
Fung
,
Y.-C.
,
2013
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer Science & Business Media
,
New York
.
24.
Haas
,
C.
,
Best
,
T. M.
,
Wang
,
Q.
,
Butterfield
,
T. A.
, and
Zhao
,
Y.
,
2012
, “
In Vivo Passive Mechanical Properties of Skeletal Muscle Improve With Massage-Like Loading Following Eccentric Exercise
,”
J. Biomech.
,
45
(
15
), pp.
2630
2636
.10.1016/j.jbiomech.2012.08.008
25.
Zhang
,
Y.
,
Kim
,
S.
,
Erdman
,
A. G.
,
Roberts
,
K. P.
, and
Timm
,
G. W.
,
2009
, “
Feasibility of Using a Computer Modeling Approach to Study SUI Induced by Landing a Jump
,”
Ann. Biomed. Eng.
,
37
(
7
), pp.
1425
1433
.10.1007/s10439-009-9705-2
26.
Dalstra
,
M.
,
Huiskes
,
R.
,
Odgaard
,
A.
, and
Van Erning
,
L.
,
1993
, “
Mechanical and Textural Properties of Pelvic Trabecular Bone
,”
J. Biomech.
,
26
(
4
), pp.
523
535
.10.1016/0021-9290(93)90014-6
27.
Brandt
,
F. T.
,
Lorenzato
,
F. R. B.
,
Nóbrega
,
L. V.
,
Albuquerque
,
C. D. C.
,
Falcão
,
R.
, and
Araújo Júnior
,
A. A. D.
,
2006
, “
Intra-Abdominal Pressure Measurement During Ultrasound Assessment of Women With Stress Urinary Incontinence: A Novel Model
,”
Acta Cir. Bras.
,
21
(
4
), pp.
237
241
.10.1590/S0102-86502006000400009
28.
Rivlin
,
R. S.
, and
Saunders
,
D.
,
1951
, “
Large Elastic Deformations of Isotropic Materials. VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London A
,
243
(
865
), pp.
251
288
.10.1098/rsta.1951.0004
29.
Systèmes
,
D.
,
2012
, “
Abaqus v6. 12 Documentation—ABAQUS Analysis User's Manual
,”
Abaqus
,
Providence, RI
.
30.
Ghoniem
,
G.
,
Stanford
,
E.
,
Kenton
,
K.
,
Achtari
,
C.
,
Goldberg
,
R.
,
Mascarenhas
,
T.
,
Parekh
,
M.
,
Tamussino
,
K.
,
Tosson
,
S.
, and
Lose
,
G.
,
2008
, “
Evaluation and Outcome Measures in the Treatment of Female Urinary Stress Incontinence: International Urogynecological Association (IUGA) Guidelines for Research and Clinical Practice
,”
Int. Urogynecol. J.
,
19
(
1
), pp.
5
33
.10.1007/s00192-007-0495-5
31.
Afonso
,
J.
,
Martins
,
P.
,
Girao
,
M.
,
Jorge
,
R. N.
,
Ferreira
,
A.
,
Mascarenhas
,
T.
,
Fernandes
,
A.
,
Bernardes
,
J.
,
Baracat
,
E.
, and
de Lima
,
G. R.
,
2008
, “
Mechanical Properties of Polypropylene Mesh Used in Pelvic Floor Repair
,”
Int. Urogynecol. J.
,
19
(
3
), pp.
375
380
.10.1007/s00192-007-0446-1
32.
Mangera
,
A.
,
Bullock
,
A. J.
,
Chapple
,
C. R.
, and
MacNeil
,
S.
,
2012
, “
Are Biomechanical Properties Predictive of the Success of Prostheses Used in Stress Urinary Incontinence and Pelvic Organ Prolapse? A Systematic Review
,”
Neurourol. Urodyn.
,
31
(
1
), pp.
13
21
.10.1002/nau.21156
33.
Duckett
,
J.
, and
Baranowski
,
A.
,
2013
, “
Pain After Suburethral Sling Insertion for Urinary Stress Incontinence
,”
Int. Urogynecol. J.
,
24
(
2
), pp.
195
201
.10.1007/s00192-012-1863-3
You do not currently have access to this content.