Our purpose was to quantify changes in local dynamic stability (LDS) of the lumbar spine, hip, knee, and ankle in response to changes in lower limb segment mass, as well as to quantify temporal adaptations to segment loading during treadmill walking. Results demonstrate that increased mass distal to a joint yields either the maintenance of, or increased stabilization of, that particular joint relative to the unloaded condition. Increased mass proximal to a particular joint resulted in joint destabilization. The hip and ankle LDS were observed to change temporally, independent of segment loading condition, suggesting adaptation to walking on a treadmill interface.

References

References
1.
Gribble
,
P. L.
, and
Scott
,
S. H.
,
2002
, “
Overlap of Internal Models in Motor Cortex for Mechanical Loads During Reaching
,”
Nature
,
417
(
6892
), pp.
938
941
.10.1038/nature00834
2.
Scott
,
S. H.
,
2004
, “
Optimal Feedback Control and the Neural Basis of Volitional Motor Control
,”
Nat. Rev. Neurosci.
,
5
(
7
), pp.
534
546
.10.1038/nrn1427
3.
Noble
,
J. W.
, and
Prentice
,
S. D.
,
2006
, “
Adaptation to Unilateral Change in Lower Limb Mechanical Properties During Human Walking
,”
Exp. Brain. Res.
,
169
(
4
), pp.
482
495
.10.1007/s00221-005-0162-3
4.
Granata
,
K. P.
, and
England
,
S. A.
,
2006
, “
Stability of Dynamic Trunk Movement
,”
Spine
,
31
(
10
), pp.
E271
E276
.10.1097/01.brs.0000216445.28943.d1
5.
Browning
,
R. C.
,
Modica
,
J. R.
,
Kram
,
R.
, and
Goswami
,
A.
,
2007
, “
The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking
,”
Med. Sci. Sports Exercise
,
39
(
3
), pp.
515
525
.10.1249/mss.0b013e31802b3562
6.
Smith
,
J. D.
,
Villa
,
S.
, and
Heise
,
G. D.
,
2013
, “
Changes in Intersegmental Dynamics Over Time Due to Increased Leg Inertia
,”
Hum. Mov. Sci.
,
32
(
6
), pp.
1443
1455
.10.1016/j.humov.2013.07.012
7.
Smith
,
J. D.
,
Royer
,
T. D.
, and
Martin
,
P. E.
,
2013
, “
Asymmetrical Loading Affects Intersegmental Dynamics During the Swing Phase of Walking
,”
Hum. Mov. Sci.
,
32
(
4
), pp.
652
667
.10.1016/j.humov.2013.03.001
8.
Roos
,
P. E.
, and
Dingwell
,
J. B.
,
2013
, “
Using Dynamic Walking Models to Identify Factors that Contribute to Increased Risk of Falling in Older Adults
,”
Hum. Movement Sci.
,
32
, pp.
984
996
.
9.
Rispens
,
S. M.
,
van Schooten
,
K. S.
,
Pijnappels
,
M.
,
Daffertshofer
,
A.
,
Beek
,
P. J.
, and
van Dieën
,
J. H.
,
2015
, “
Identification of Fall Risk Predictors in Daily Life Measurements: Gait Characteristics' Reliability and Association With Self-reported Fall History
,”
Neurorehab. NeuralRe.
,
29
(
1
), pp.
54
61
.
10.
England
,
S. A.
, and
Granata
,
K. P.
,
2007
, “
The Influence of Gait Speed on Local Dynamic Stability of Walking
,”
Gait Posture
,
25
(
2
), pp.
172
178
.10.1016/j.gaitpost.2006.03.003
11.
Bruijn
,
S. M.
,
van Dieёn
,
J. H.
,
Meijer
,
O. G.
, and
Beek
,
P. J.
,
2009
, “
Is Slow Walking More Stable?
,”
J. Biomech.
,
42
(
10
), pp.
1506
1512
.10.1016/j.jbiomech.2009.03.047
12.
Hak
,
L.
,
Houdijk
,
H.
,
Beek
,
P. J.
, and
van Dieёn
,
J. H.
,
2013
, “
Steps to Take to Enhance Gait Stability: The Effect of Stride Frequency, Stride Length, and Walking Speed on Local Dynamic Stability and Margins of Stability
,”
PLoS One
,
8
(
12
), p.
e82842
.10.1371/journal.pone.0082842
13.
Russell
,
D. M.
, and
Haworth
,
J. L.
,
2014
, “
Walking at the Preferred Stride Frequency Maximizes Local Dynamic Stability of Knee Motion
,”
J. Biomech.
,
47
(
1
), pp.
102
108
.10.1016/j.jbiomech.2013.10.012
14.
Sloot
,
L. H.
,
van Schooten
,
K. S.
,
Bruijn
,
S. M.
,
Kingma
,
H.
,
Pijnapples
,
M.
, and
van Dieёn
,
J. H.
,
2011
, “
Sensitivity of Local Dynamic Stability of Over-Ground Walking to Balance Impairment Due to Galvanic Vestibular Stimulation
,”
Ann. Biomech. Eng.
,
39
(
5
), pp.
1563
1569
.10.1007/s10439-010-0240-y
15.
van Schooten
,
K. S.
,
Rispens
,
S. M.
,
Elders
,
P. J. M.
,
van Dieёn
,
J. H.
, and
Pijnappels
,
M.
,
2014
, “
Toward Ambulatory Balance Assessment: Estimating Variability and Stability From Short Bouts of Gait
,”
Gait Posture
,
39
(
2
), pp.
695
699
.10.1016/j.gaitpost.2013.09.020
16.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
De Luca
,
C. J.
,
1993
, “
A Practical Method For Calculating Largest Lyapunov Exponents From Small Data Sets
,”
Phys. D
,
65
(
1–2
), pp.
117
134
.10.1016/0167-2789(93)90009-P
17.
Dingwell
,
J. B.
,
Cusumano
,
J. P.
,
Cavanagh
,
P. R.
, and
Sternad
,
D.
,
2001
, “
Local Dynamic Stability Versus Kinematic Variability of Continuous Overground and Treadmill Walking
,”
ASME J. Biomech. Eng.
,
123
(
1
), pp.
27
32
.10.1115/1.1336798
18.
Dingwell
,
J. B.
, and
Marin
,
L. C.
,
2006
, “
Kinematic Variability and Local Dynamic Stability of Upper Body Motions When Walking at Different Speeds
,”
J. Biomech.
,
39
(
3
), pp.
444
452
.10.1016/j.jbiomech.2004.12.014
19.
Bruijn
,
S. M.
,
van Dieёn
,
J. H.
,
Meijer
,
O. G.
, and
Beek
,
P. J.
,
2009
, “
Statistical Precision and Sensitivity of Measures of Dynamic Gait Stability
,”
J. Neurosci. Methods
,
178
(
2
), pp.
327
333
.10.1016/j.jneumeth.2008.12.015
20.
Granata
,
K. P.
, and
Gottipati
,
P.
,
2008
, “
Fatigue Influences the Dynamic Stability of the Torso
,”
Ergonomics
,
51
(
8
), pp.
1258
1271
.10.1080/00140130802030722
21.
Graham
,
R. B.
,
Oikawa
,
L. Y.
, and
Ross
,
G. B.
,
2014
, “
Comparing the Local Dynamic Stability of Trunk Movements Between Varsity Athletes With and Without Non-Specific Low Back Pain
,”
J. Biomech.
,
47
(
6
), pp.
1459
1464
.10.1016/j.jbiomech.2014.01.033
22.
Graham
,
R. B.
, and
Brown
,
S. H. M.
,
2012
, “
A Direct Comparison of Spine Rotational Stiffness and Dynamic Spine Stability During Repetitive Lifting Tasks
,”
J. Biomech.
,
45
(
9
), pp.
1593
1600
.10.1016/j.jbiomech.2012.04.007
23.
Beaudette
,
S. M.
,
Graham
,
R. B.
, and
Brown
,
S. H. M.
,
2014
, “
The Effect of Unstable Loading Versus Unstable Support Conditions on Spine Rotational Stiffness and Spine Stability During Repetitive Lifting
,”
J. Biomech.
,
47
(
2
), pp.
491
496
.10.1016/j.jbiomech.2013.10.055
24.
Elias
,
L. J.
,
Bryden
,
M. P.
, and
Bulma-Fleming
,
M. B.
,
1998
, “
Footedness is a Better Predictor Than is Handedness of Emotional Lateralization
,”
Neuropsychologia
,
36
(
1
), pp.
37
43
.10.1016/S0028-3932(97)00107-3
25.
Winter
,
D. A.
,
2005
,
Biomechanics and Motor Control of Human Movement
,
3rd ed.
,
Wiley
,
Hoboken, NJ
, Chap. 4.
26.
Gates
,
D. H.
, and
Dingwell
,
J. B.
,
2009
, “
Comparison of Different State Space Definitions for Local Dynamic Stability Analyses
,”
J. Biomech.
,
42
(
9
), pp.
1345
1349
.10.1016/j.jbiomech.2009.03.015
27.
Kennel
,
M.
,
Brown
,
R.
, and
Abarbanel
,
H.
,
1992
, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
,
45
(
6
), pp.
3403
3411
.10.1103/PhysRevA.45.3403
28.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
De Luca
,
C. J.
,
1994
, “
Reconstruction Expansion as a Geometry-Based Framework for Choosing Proper Delay Times
,”
Physica D
,
73
(
1–2
), pp.
82
98
.10.1016/0167-2789(94)90226-7
29.
Reynard
,
F.
, and
Terrier
,
P.
,
2014
, “
Local Dynamic Stability of Treadmill Walking: Intrasession and Week-to-Week Repeatability
,”
J. Biomech.
,
47
(
1
), pp.
74
80
.10.1016/j.jbiomech.2013.10.011
30.
Ferber
,
R.
,
Osternig
,
L. R.
,
Woollacott
,
M. H.
,
Wasielewski
,
N. J.
, and
Lee
,
J. H.
,
2002
, “
Reactive Balance Adjustments to Unexpected Perturbations During Human Walking
,”
Gait Posture
,
16
(
3
), pp.
238
248
.10.1016/S0966-6362(02)00010-3
31.
Runge
,
C. F.
,
Shupert
,
C. L.
,
Horak
,
F. B.
, and
Zajac
,
F. E.
,
1999
, “
Ankle and Hip Postural Strategies Defined by Joint Torques
,”
Gait Posture
,
10
(
2
), pp.
161
170
.10.1016/S0966-6362(99)00032-6
32.
Lam
,
T.
,
Wolstenholme
,
C.
, and
Yang
,
J. F.
,
2003
, “
How do Infants Adapt to Loading of the Limb During the Swing Phase of Stepping?
,”
J. Neurophysiol.
,
89
(
4
), pp.
1920
1928
.10.1152/jn.01030.2002
33.
Rosenblatt
,
N. J.
, and
Grabiner
,
M. D.
,
2010
, “
Measures of Frontal Plane Stability During Treadmill and Overground Walking
,”
Gait Posture
,
31
(
3
), pp.
380
384
.10.1016/j.gaitpost.2010.01.002
You do not currently have access to this content.