Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to be extracted from single-axis accelerometer data.

References

References
1.
Langlois
,
J. A.
,
Rutland-Brown
,
W.
, and
Wald
,
M. M.
,
2006
, “
The Epidemiology and Impact of Traumatic Brain Injury: A Brief Overview
,”
J. Head Trauma Rehabil.
,
21
(
5
), pp.
375
378
.10.1097/00001199-200609000-00001
2.
DeKosky
,
S. T.
,
Ikonomovic
,
M. D.
, and
Gandy
,
S.
,
2010
, “
Traumatic Brain Injury—Football, Warfare, and Long-Term Effects
,”
N. Engl. J. Med.
,
363
(
14
), pp.
1293
1296
.10.1056/NEJMp1007051
3.
Viano
,
D. C.
, and
Pellman
,
E. J.
,
2005
, “
Concussion in Professional Football: Biomechanics of the Striking Player—Part 8
,”
Neurosurgery
,
56
(
2
), pp.
266
278
.10.1227/01.NEU.0000150035.54230.3C
4.
Pellman
,
E. J.
,
Viano
,
D. C.
,
Tucker
,
A. M.
,
Casson
,
I. R.
, and
Waeckerle
,
J. F.
,
2003
, “
Concussion in Professional Football: Reconstruction of Game Impacts and Injuries
,”
Neurosurgery
,
53
(
4
), pp.
799
814
.10.1227/01.NEU.0000083559.68424.3F
5.
Meaney
,
D. F.
,
Morrison
,
B.
, and
Dale Bass
,
C.
,
2014
, “
The Mechanics of Traumatic Brain Injury: A Review of What We Know and What We Need to Know for Reducing Its Societal Burden
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021008
.10.1115/1.4026364
6.
Crisco
,
J. J.
,
Wilcox
,
B. J.
,
Beckwith
,
J. G.
,
Chu
,
J. J.
,
Duhaime
,
A.-C.
,
Rowson
,
S.
,
Duma
,
S. M.
,
Maerlender
,
A. C.
,
McAllister
,
T. W.
, and
Greenwald
,
R. M.
,
2011
, “
Head Impact Exposure in Collegiate Football Players
,”
J. Biomech.
,
44
(
15
), pp.
2673
2678
.10.1016/j.jbiomech.2011.08.003
7.
Viano
,
D. C.
,
Casson
,
I. R.
, and
Pellman
,
E. J.
,
2007
, “
Concussion in Professional Football
,”
Neurosurgery
,
61
(
2
), pp.
313
328
.10.1227/01.NEU.0000279969.02685.D0
8.
Greenwald
,
R. M.
,
Gwin
,
J. T.
,
Chu
,
J. J.
, and
Crisco
,
J. J.
,
2008
, “
Head Impact Severity Measures for Evaluating Mild Traumatic Brain Injury Risk Exposure
,”
Neurosurgery
,
62
(
4
), pp.
789
798
.10.1227/01.neu.0000318162.67472.ad
9.
Hanlon
,
E. M.
, and
Bir
,
C. A.
,
2012
, “
Real-Time Head Acceleration Measurement in Girls' Youth Soccer
,”
Med. Sci. Sports Exercise
,
44
(
6
), pp.
1102
1108
.10.1249/MSS.0b013e3182444d7d
10.
Wu
,
L.
,
Zarnescu
,
L.
,
Nangia
,
V.
,
Cam
,
B.
, and
Camarillo
,
D.
,
2014
, “
A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented Mouthguard
,”
IEEE Trans. Biomed. Eng.
,
61
(
11
), pp.
2659
2668
.10.1109/TBME.2014.2320153
11.
Ding
,
M
.,
2010
, “
Design and Study of Error Compensation Method for Improving the Precision of Angular Rates of Nongyro Inertial Measurement Units
,”
J. Micro/Nanolithogr. MEMS MOEMS
,
9
(
3
), p.
033009
.10.1117/1.3481145
12.
Schopp
,
P.
,
Klingbeil
,
L.
,
Peters
,
C.
, and
Manoli
,
Y.
,
2010
, “
Design, Geometry Evaluation, and Calibration of a Gyroscope-Free Inertial Measurement Unit
,”
Sens. Actuators
, A,
162
(
2
), pp.
379
387
.10.1016/j.sna.2010.01.019
13.
Tan
,
C. W.
, and
Park
,
S.
,
2005
, “
Design of Accelerometer-Based Inertial Navigation Systems
,”
IEEE Trans. Instrum. Meas.
,
54
(
6
), pp.
2520
2530
.10.1109/TIM.2005.858129
14.
Padgaonkar
,
A. J.
,
Krieger
,
K. W.
, and
King
,
A. I.
,
1975
, “
Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers
,”
ASME J. Appl. Mech.
,
42
(
3
), pp.
552
556
.10.1115/1.3423640
15.
Wang
,
D. H.
, and
Yuan
,
G.
,
2011
, “
A Six-Degree-of-Freedom Acceleration Sensing Method Based on Six Coplanar Single-Axis Accelerometers
,”
IEEE Trans. Instrum. Meas.
,
60
(
4
), pp.
1433
1442
.10.1109/TIM.2010.2083331
16.
Parsa
,
K.
,
Lasky
,
T. A.
, and
Ravani
,
B.
, “
Design and Implementation of a Mechatronic, All-Accelerometer Inertial Measurement Unit
,”
IEEE/ASME Trans. Mechatron.
,
12
(
6
), pp.
640
650
.10.1109/TMECH.2007.910080
17.
Cardou
,
P.
, and
Angeles
,
J.
,
2009
, “
Linear Estimation of the Rigid-Body Acceleration Field From Point-Acceleration Measurements
,”
J. Dyn. Syst. Meas. Contr.
,
131
(
4
), p.
041013
.10.1115/1.3117209
18.
Kang
,
Y.-S.
,
Moorhouse
,
K.
, and
Bolte
,
J. H.
,
2011
, “
Measurement of Six Degrees of Freedom Head Kinematics in Impact Conditions Employing Six Accelerometers and Three Angular Rate Sensors (6aω Configuration)
,”
ASME J. Biomech. Eng.
,
133
(
11
), p.
111007
.10.1115/1.4005427
19.
Crisco
,
J. J.
,
Chu
,
J. J.
, and
Greenwald
,
R. M.
,
2004
, “
An Algorithm for Estimating Acceleration Magnitude and Impact Location Using Multiple Nonorthogonal Single-Axis Accelerometers
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
849
854
.10.1115/1.1824135
20.
Chu
,
J. J.
,
Beckwith
,
J. G.
,
Crisco
,
J. J.
, and
Greenwald
,
R. M.
,
2006
, “
A Novel Algorithm to Measure Linear and Rotational Head Acceleration Using Single-Axis Accelerometers
,”
J. Biomech.
,
39
(
1
), p.
S534
.10.1016/S0021-9290(06)85195-X
21.
Rowson
,
S.
,
Beckwith
,
J. G.
,
Chu
,
J. J.
,
Leonard
,
D. S.
,
Greenwald
,
R. M.
, and
Duma
,
S. M.
,
2011
, “
A Six Degree of Freedom Head Acceleration Measurement Device for Use in Football
,”
J. Appl. Biomech.
,
27
(
1
), pp.
8
14
.
22.
Crisco
,
J. J.
,
Wilcox
,
B. J.
,
Machan
,
J. T.
,
McAllister
,
T. W.
,
Duhaime
,
A.-C.
,
Duma
,
S. M.
,
Rowson
,
S.
,
Beckwith
,
J. G.
,
Chu
,
J. J.
, and
Greenwald
,
R. M.
,
2012
, “
Magnitude of Head Impact Exposures in Individual Collegiate Football Players
,”
J. Appl. Biomech.
,
28
(
2
), pp.
174
183
.
23.
Guan
,
W.
,
Meng
,
X.
, and
Dong
,
X.
,
2014
, “
Accelerometer Transverse Sensitivity Testing With Double Turntable Centrifuge
,”
IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
, pp.
578
582
.
24.
Titterton
,
D.
, and
Weston
,
J. L.
,
2004
,
Strapdown Inertial Navigation Technology
,
2nd ed.
,
IET, The Institution of Engineering and Technology
,
London, UK, and The American Institute of Aeronautics, Reston, VA
.
25.
Ahmadi
,
A.
,
Rowlands
,
D.
, and
James
,
D. A.
,
2010
, “
Towards a Wearable Device for Skill Assessment and Skill Acquisition of a Tennis Player During the First Serve
,”
Sports Technol.
,
2
(
3-4
), pp.
129
136
.10.1002/jst.112
26.
Ahmadi
,
A.
,
Rowlands
,
D. D.
, and
James
,
D. A.
,
2010
, “
Development of Inertial and Novel Marker-Based Techniques and Analysis for Upper Arm Rotational Velocity Measurements in Tennis
,”
Sports Eng.
,
12
(
4
), pp.
179
188
.10.1007/s12283-010-0044-1
27.
Cross
,
R
.,
2009
, “
Mechanics of Swinging a Bat
,”
Am. J. Phys.
,
77
(
1
), pp.
36
43
.10.1119/1.2983146
You do not currently have access to this content.