Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s−1 shear rate). To evaluate their impact on microscale flow resistance, we used 10-μm Isopore® membranes to model capillaries as well as single 200 × 50 μm microchannels and networks of twenty 20 × 50 μm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia).

References

References
1.
Granger
,
D. N.
, and
Senchenkova
,
E.
,
2010
, “
Leukocyte-Endothelial Cell Adhesion
,”
Inflammation and the Microcirculation
(Integrated Systems Physiology—From Cell to Function),
Morgan & Claypool Life Sciences
,
San Rafael, CA
.
2.
Baskurt
,
O. K.
, and
Meiselman
,
H. J.
,
2003
, “
Blood Rheology and Hemodynamics
,”
Semin. Thromb. Hemostasis
,
29
(
5
), pp.
435
450
.
3.
Popel
,
A. S.
, and
Johnson
,
P. C.
,
2005
, “
Microcirculation and Hemorheology
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
43
69
.10.1146/annurev.fluid.37.042604.133933
4.
Sethu
,
P.
,
Moldawer
,
L. L.
,
Mindrinos
,
M. N.
,
Scumpia
,
P. O.
,
Tannahill
,
C. L.
,
Wilhelmy
,
J.
,
Efron
,
P. A.
,
Brownstein
,
B. H.
,
Tompkins
,
R. G.
, and
Toner
,
M.
,
2006
, “
Microfluidic Isolation of Leukocytes From Whole Blood for Phenotype and Gene Expression Analysis
,”
Anal. Chem.
,
78
(
15
), pp.
5453
5461
.10.1021/ac060140c
5.
Schmid-Schonbein
,
G. W.
,
2006
, “
Analysis of Inflammation
,”
Annu. Rev. Biomed. Eng.
,
8
, pp.
93
131
.10.1146/annurev.bioeng.8.061505.095708
6.
Lipowsky
,
H. H.
,
2005
, “
Microvascular Rheology and Hemodynamics
,”
Microcirculation
,
12
(
1
), pp.
5
15
.10.1080/10739680590894966
7.
Mazzoni
,
M. C.
, and
Schmid-Schonbein
,
G. W.
,
1996
, “
Mechanisms and Consequences of Cell Activation in the Microcirculation
,”
Cardiovas. Res.
,
32
(
4
), pp.
709
719
.10.1016/0008-6363(96)00146-0
8.
Arndt
,
H.
,
Smith
,
C. W.
, and
Granger
,
D. N.
,
1993
, “
Leukocyte-Endothelial Cell Adhesion in Spontaneously Hypertensive and Normotensive Rats
,”
Hypertension
,
21
(
5
), pp.
667
673
.10.1161/01.HYP.21.5.667
9.
Williams
,
S. A.
, and
Tooke
,
J. E.
,
1992
, “
Noninvasive Estimation of Increased Structurally-Based Resistance to Blood Flow in the Skin of Subjects With Essential Hypertension
,”
Int. J. Microcirc., Clin. Exp.
,
11
(
1
), pp.
109
116
.
10.
Worthen
,
G. S.
,
Schwab
,
B.
, 3rd
,
Elson
,
E. L.
, and
Downey
,
G. P.
,
1989
, “
Mechanics of Stimulated Neutrophils: Cell Stiffening Induces Retention in Capillaries
,”
Science
,
245
(
4914
), pp.
183
186
.10.1126/science.2749255
11.
Schmid-Schonbein
,
G. W.
,
Usami
,
S.
,
Skalak
,
R.
, and
Chien
,
S.
,
1980
, “
The Interaction of Leukocytes and Erythrocytes in Capillary and Postcapillary Vessels
,”
Microvas. Res.
,
19
(
1
), pp.
45
70
.10.1016/0026-2862(80)90083-7
12.
Eppihimer
,
M. J.
, and
Lipowsky
,
H. H.
,
1996
, “
Effects of Leukocyte-Capillary Plugging on the Resistance to Flow in the Microvasculature of Cremaster Muscle for Normal and Activated Leukocytes
,”
Microvas. Res.
,
51
(
2
), pp.
187
201
.10.1006/mvre.1996.0020
13.
Adams
,
R. A.
,
Evans
,
S. A.
, and
Jones
,
J. G.
,
1994
, “
Characterization of Leukocytes by Filtration of Diluted Blood
,”
Biorheology
,
31
(
6
), pp.
603
615
.
14.
Kikuchi
,
Y.
,
1995
, “
Effect of Leukocytes and Platelets on Blood Flow Through a Parallel Array of Microchannels: Micro- and Macroflow Relation and Rheological Measures of Leukocyte and Platelet Activities
,”
Microvas. Res.
,
50
(
2
), pp.
288
300
.10.1006/mvre.1995.1059
15.
Kikuchi
,
Y.
,
Sato
,
K.
, and
Mizuguchi
,
Y.
,
1994
, “
Modified Cell-Flow Microchannels in a Single-Crystal Silicon Substrate and Flow Behavior of Blood Cells
,”
Microvas. Res.
,
47
(
1
), pp.
126
139
.10.1006/mvre.1994.1008
16.
Schmid-Schonbein
,
G. W.
,
1987
, “
Capillary Plugging by Granulocytes and the No-Reflow Phenomenon in the Microcirculation
,”
Fed. Proc.
,
46
(
7
), pp.
2397
2401
.
17.
Karnis
,
A.
,
Goldsmith
,
H. L.
, and
Mason
,
S. G.
,
1963
, “
Axial Migration of Particles in Poiseuille Flow
,”
Nature
,
200
(
4902
), pp.
159
160
.10.1038/200159a0
18.
Pries
,
A. R.
,
Secomb
,
T. W.
, and
Gaehtgens
,
P.
,
1996
, “
Biophysical Aspects of Blood Flow in the Microvasculature
,”
Cardiovas. Res.
,
32
(
4
), pp.
654
667
.10.1016/0008-6363(96)00065-X
19.
Fåhræus
,
R.
, and
Lindqvist
,
T.
,
1931
, “
The Viscosity of the Blood in Narrow Capillary Tubes
,”
96
(
3
), pp.
562
568
.
20.
Kim
,
S.
,
Ong
,
P. K.
,
Yalcin
,
O.
,
Intaglietta
,
M.
, and
Johnson
,
P. C.
,
2009
, “
The Cell-Free Layer in Microvascular Blood Flow
,”
Biorheology
,
46
(
3
), pp.
181
189
.10.3233/BIR-2009-0530
21.
Freund
,
J. B.
, and
Orescanin
,
M. M.
,
2011
, “
Cellular Flow in a Small Blood Vessel
,”
J. Fluid Mech.
,
671
, pp.
466
490
.10.1017/S0022112010005835
22.
Harris
,
A. G.
, and
Skalak
,
T. C.
,
1993
, “
Effects of Leukocyte Activation on Capillary Hemodynamics in Skeletal Muscle
,”
Am. J. Physiol.
,
264
(
3 Pt 2
), pp.
H909
916
.
23.
Helmke
,
B. P.
,
Bremner
,
S. N.
,
Zweifach
,
B. W.
,
Skalak
,
R.
, and
Schmid-Schonbein
,
G. W.
,
1997
, “
Mechanisms for Increased Blood Flow Resistance Due to Leukocytes
,”
Am. J. Physiol.
,
273
(
6 Pt 2
), pp.
H2884
2890
.
24.
Helmke
,
B. P.
,
Sugihara-Seki
,
M.
,
Skalak
,
R.
, and
Schmid-Schonbein
,
G. W.
,
1998
, “
A Mechanism for Erythrocyte-Mediated Elevation of Apparent Viscosity by Leukocytes In Vivo Without Adhesion to the Endothelium
,”
Biorheology
,
35
(
6
), pp.
437
448
.10.1016/S0006-355X(99)80021-3
25.
Makino
,
A.
,
Glogauer
,
M.
,
Bokoch
,
G. M.
,
Chien
,
S.
, and
Schmid-Schonbein
,
G. W.
,
2005
, “
Control of Neutrophil Pseudopods by Fluid Shear: Role of Rho Family GTPases
,”
Am. J. Physiol. Cell Physiol.
,
288
(
4
), pp.
C863
871
.
26.
Makino
,
A.
,
Prossnitz
,
E. R.
,
Bunemann
,
M.
,
Wang
,
J. M.
,
Yao
,
W.
, and
Schmid-Schonbein
,
G. W.
,
2006
, “
G Protein-Coupled Receptors Serve as Mechanosensors for Fluid Shear Stress in Neutrophils
,”
Am. J. Physiol. Cell Physiol.
,
290
(
6
), pp.
C1633
1639
.10.1152/ajpcell.00576.2005
27.
Rainger
,
G. E.
,
Buckley
,
C. D.
,
Simmons
,
D. L.
, and
Nash
,
G. B.
,
1999
, “
Neutrophils Sense Flow-Generated Stress and Direct Their Migration Through AlphaVbeta3-Integrin
,”
Am. J. Physiol.
,
276
(
3 Pt 2
), pp.
H858
864
.
28.
Usami
,
S.
,
Chen
,
H. H.
,
Zhao
,
Y.
,
Chien
,
S.
, and
Skalak
,
R.
,
1993
, “
Design and Construction of a Linear Shear Stress Flow Chamber
,”
Ann. Biomed. Eng.
,
21
(
1
), pp.
77
83
.10.1007/BF02368167
29.
Carrigan
,
S. O.
,
Weppler
,
A. L.
,
Issekutz
,
A. C.
, and
Stadnyk
,
A. W.
,
2005
, “
Neutrophil Differentiated HL-60 Cells Model Mac-1 (CD11b/CD18)-Independent Neutrophil Transepithelial Migration
,”
Immunology
,
115
(
1
), pp.
108
117
.10.1111/j.1365-2567.2005.02131.x
30.
Hauert
,
A. B.
,
Martinelli
,
S.
,
Marone
,
C.
, and
Niggli
,
V.
,
2002
, “
Differentiated HL-60 Cells Are a Valid Model System for the Analysis of Human Neutrophil Migration and Chemotaxis
,”
Int. J. Biochem. Cell Biol.
,
34
(
7
), pp.
838
854
.10.1016/S1357-2725(02)00010-9
31.
Sham
,
R. L.
,
Packman
,
C. H.
,
Abboud
,
C. N.
, and
Lichtman
,
M. A.
,
1991
, “
Signal Transduction and the Regulation of Actin Conformation During Myeloid Maturation: Studies in HL60 Cells
,”
Blood
,
77
(
2
), pp.
363
370
.
32.
Zhelev
,
D. V.
,
Alteraifi
,
A. M.
, and
Chodniewicz
,
D.
,
2004
, “
Controlled Pseudopod Extension of Human Neutrophils Stimulated With Different Chemoattractants
,”
Biophys. J.
,
87
(
1
), pp.
688
695
.10.1529/biophysj.103.036699
33.
Neelamegham
,
S.
,
Taylor
,
A. D.
,
Burns
,
A. R.
,
Smith
,
C. W.
, and
Simon
,
S. I.
,
1998
, “
Hydrodynamic Shear Shows Distinct Roles for LFA-1 and Mac-1 in Neutrophil Adhesion to Intercellular Adhesion Molecule-1
,”
Blood
,
92
(
5
), pp.
1626
1638
.
34.
Russo
,
R. G.
,
Liotta
,
L. A.
,
Thorgeirsson
,
U.
,
Brundage
,
R.
, and
Schiffmann
,
E.
,
1981
, “
Polymorphonuclear Leukocyte Migration Through Human Amnion Membrane
,”
J. Cell Biol.
,
91
(
2 Pt 1
), pp.
459
467
.10.1083/jcb.91.2.459
35.
Rochon
,
Y. P.
, and
Frojmovic
,
M. M.
,
1991
, “
Dynamics of Human Neutrophil Aggregation Evaluated by Flow Cytometry
,”
J. Leukocyte Biol.
,
50
(
5
), pp.
434
443
.
36.
Fukuda
,
S.
,
Yasu
,
T.
,
Predescu
,
D. N.
, and
Schmid-Schonbein
,
G. W.
,
2000
, “
Mechanisms for Regulation of Fluid Shear Stress Response in Circulating Leukocytes
,”
Circ. Res.
,
86
(
1
), pp.
E13
E18
.10.1161/01.RES.86.1.e13
37.
Moazzam
,
F.
,
DeLano
,
F. A.
,
Zweifach
,
B. W.
, and
Schmid-Schonbein
,
G. W.
,
1997
, “
The Leukocyte Response to Fluid Stress
,”
Proc. Natl. Acad. Sci. U. S. A.
,
94
(
10
), pp.
5338
5343
.10.1073/pnas.94.10.5338
38.
Taylor
,
A. D.
,
Neelamegham
,
S.
,
Hellums
,
J. D.
,
Smith
,
C. W.
, and
Simon
,
S. I.
,
1996
, “
Molecular Dynamics of the Transition From L-Selectin- to Beta 2-Integrin-Dependent Neutrophil Adhesion Under Defined Hydrodynamic Shear
,”
Biophys. J.
,
71
(
6
), pp.
3488
3500
.10.1016/S0006-3495(96)79544-9
39.
Merrill
,
E. W.
,
1969
, “
Rheology of Blood
,”
Physiol. Rev.
,
49
(
4
), pp.
863
888
.
40.
Besarab
,
A.
,
Bolton
,
W. K.
,
Browne
,
J. K.
,
Egrie
,
J. C.
,
Nissenson
,
A. R.
,
Okamoto
,
D. M.
,
Schwab
,
S. J.
, and
Goodkin
,
D. A.
,
1998
, “
The Effects of Normal as Compared With Low Hematocrit Values in Patients With Cardiac Disease Who Are Receiving Hemodialysis and Epoetin
,”
N. Engl. J. Med.
,
339
(
9
), pp.
584
590
.10.1056/NEJM199808273390903
41.
Fang
,
W. C.
,
Helm
,
R. E.
,
Krieger
,
K. H.
,
Rosengart
,
T. K.
,
DuBois
,
W. J.
,
Sason
,
C.
,
Lesser
,
M. L.
,
Isom
,
O. W.
, and
Gold
,
J. P.
,
1997
, “
Impact of Minimum Hematocrit During Cardiopulmonary Bypass on Mortality in Patients Undergoing Coronary Artery Surgery
,”
Circulation
,
96
(
9 Suppl
), pp.
II
-
194–199
.
42.
Miller
,
G. E.
,
2010
,
Fundamentals of Biomedical Transport Processes
,
Morgan & Claypool
,
San Rafael, CA
.
43.
Goldsmith
,
H. L.
,
Lichtarge
,
O.
,
Tessier-Lavigne
,
M.
, and
Spain
,
S.
,
1981
, “
Some Model Experiments in Hemodynamics: VI. Two-Body Collisions Between Blood Cells
,”
Biorheology
,
18
(
3–6
), pp.
531
555
.
44.
Goldsmith
,
H. L.
,
Quinn
,
T. A.
,
Drury
,
G.
,
Spanos
,
C.
,
McIntosh
,
F. A.
, and
Simon
,
S. I.
,
2001
, “
Dynamics of Neutrophil Aggregation in Couette Flow Revealed by Videomicroscopy: Effect of Shear Rate on Two-Body Collision Efficiency and Doublet Lifetime
,”
Biophys. J.
,
81
(
4
), pp.
2020
2034
.10.1016/S0006-3495(01)75852-3
45.
Sutton
,
D. W.
, and
Schmid-Schonbein
,
G. W.
,
1992
, “
Elevation of Organ Resistance Due to Leukocyte Perfusion
,”
Am. J. Physiol.
,
262
(
6 Pt 2
), pp.
H1646
H1650
.
46.
Bagge
,
U.
, and
Braide
,
M.
,
1982
, “
Leukocyte Plugging of Capillaries In Vivo
,”
White Blood Cells
(Microcirculation Reviews), Vol.
1
,
U.
Bagge
,
G. V. R.
Born
, and
P.
Gaehtgens
, eds.,
Springer
,
Amsterdam, The Netherlands
, pp.
89
98
.
47.
Klitzman
,
B.
, and
Duling
,
B. R.
,
1979
, “
Microvascular Hematocrit and Red Cell Flow in Resting and Contracting Striated Muscle
,”
Am. J. Physiol.
,
237
(
4
), pp.
H481
H490
.
48.
Meisel
,
S. R.
,
Shapiro
,
H.
,
Radnay
,
J.
,
Neuman
,
Y.
,
Khaskia
,
A. R.
,
Gruener
,
N.
,
Pauzner
,
H.
, and
David
,
D.
,
1998
, “
Increased Expression of Neutrophil and Monocyte Adhesion Molecules LFA-1 and Mac-1 and Their Ligand ICAM-1 and VLA-4 Throughout the Acute Phase of Myocardial Infarction: Possible Implications for Leukocyte Aggregation and Microvascular Plugging
,”
J. Am. Coll. Cardiol.
,
31
(
1
), pp.
120
125
.10.1016/S0735-1097(97)00424-5
49.
De Ville
,
M.
,
Coquet
,
P.
,
Brunet
,
P.
, and
Boukherroub
,
R.
,
2012
, “
Simple and Low-Cost Fabrication of PDMS Microfluidic Round Channels by Surface-Wetting Parameters Optimization
,”
Microfluid. Nanofluid.
,
12
(
6
), pp.
953
961
.10.1007/s10404-011-0929-8
50.
Faivre
,
M.
,
Abkarian
,
M.
,
Bickraj
,
K.
, and
Stone
,
H. A.
,
2006
, “
Geometrical Focusing of Cells in a Microfluidic Device: An Approach to Separate Blood Plasma
,”
Biorheology
,
43
(
2
), pp.
147
159
.
51.
Shevkoplyas
,
S. S.
,
Gifford
,
S. C.
,
Yoshida
,
T.
, and
Bitensky
,
M. W.
,
2003
, “
Prototype of an In Vitro Model of the Microcirculation
,”
Microvas. Res.
,
65
(
2
), pp.
132
136
.10.1016/S0026-2862(02)00034-1
52.
Lima
,
R.
,
Wada
,
S.
,
Tanaka
,
S.
,
Takeda
,
M.
,
Ishikawa
,
T.
,
Tsubota
,
K.
,
Imai
,
Y.
, and
Yamaguchi
,
T.
,
2008
, “
In Vitro Blood Flow in a Rectangular PDMS Microchannel: Experimental Observations Using a Confocal Micro-System
,”
Biomed. Microdevices
,
10
(
2
), pp.
153
167
.10.1007/s10544-007-9121-z
53.
Goyal
,
M. R.
,
2013
,
Biofluid Dynamics of Human Body Systems
,
Apple Academic Press
,
Toronto, Canada
.
54.
Doring
,
Y.
,
Drechsler
,
M.
,
Soehnlein
,
O.
, and
Weber
,
C.
,
2014
, “
Neutrophils in Atherosclerosis: From Mice to Man
,”
Arterioscler., Thromb., Vasc. Biol.
,
35
, pp.
485
491
.10.1161/ATVBAHA.114.303564
55.
Hansen
,
P. R.
,
1995
, “
Role of Neutrophils in Myocardial Ischemia and Reperfusion
,”
Circulation
,
91
(
6
), pp.
1872
1885
.10.1161/01.CIR.91.6.1872
You do not currently have access to this content.