Recent computed tomography coronary angiography (CCTA) studies have noted higher transluminal contrast agent gradients in arteries with stenotic lesions, but the physical mechanism responsible for these gradients is not clear. We use computational fluid dynamics (CFD) modeling coupled with contrast agent dispersion to investigate the mechanism for these gradients. Simulations of blood flow and contrast agent dispersion in models of coronary artery are carried out for both steady and pulsatile flows, and axisymmetric stenoses of severities varying from 0% (unobstructed) to 80% are considered. Simulations show the presence of measurable gradients with magnitudes that increase monotonically with stenotic severity when other parameters are held fixed. The computational results enable us to examine and validate the hypothesis that transluminal contrast gradients (TCG) are generated due to the advection of the contrast bolus with time-varying contrast concentration that appears at the coronary ostium. Since the advection of the bolus is determined by the flow velocity in the artery, the magnitude of the gradient, therefore, encodes the coronary flow velocity. The correlation between the flow rate estimated from TCG and the actual flow rate in the computational model of a physiologically realistic coronary artery is 96% with a R2 value of 0.98. The mathematical formulae connecting TCG to flow velocity derived here represent a novel and potentially powerful approach for noninvasive estimation of coronary flow velocity from CT angiography.

References

References
1.
Becker
,
C. R.
,
Ohnesorge
,
B. M.
,
Schoepf
,
U. J.
, and
Reiser
,
M. F.
,
2000
, “
Current Development of Cardiac Imaging With Multidetector-Row CT
,”
Eur. J. Radiol.
,
36
(
2
), pp.
97
103
.10.1016/S0720-048X(00)00272-2
2.
Vincent
,
H.
, and
Reddy
,
G. P.
,
2010
,
Cardiovascular Imaging
, 1 Har/Psc, ed., Vol.
2
,
Saunders
,
Philadelphia, PA
.
3.
Choi
,
J.-H.
,
Koo
,
B.-K.
,
Yoon
,
Y. E.
,
Min
,
J. K.
,
Song
,
Y.-B.
,
Hahn
,
J.-Y.
,
Choi
,
S.-H.
,
Gwon
,
H.-C.
, and
Choe
,
Y. H.
,
2012
, “
Diagnostic Performance of Intracoronary Gradient-Based Methods by Coronary Computed Tomography Angiography for the Evaluation of Physiologically Significant Coronary Artery Stenoses: A Validation Study With Fractional Flow Reserve
,”
Eur. Heart J. Cardiovasc. Imaging
,
13
(
12
), pp.
1001
1007
.10.1093/ehjci/jes130
4.
Choi
,
J.-H.
,
Min
,
J. K.
,
Labounty
,
T. M.
,
Lin
,
F. Y.
,
Mendoza
,
D. D.
,
Shin
,
D. H.
,
Ariaratnam
,
N. S.
,
Koduru
,
S.
,
Granada
,
J. F.
,
Gerber
,
T. C.
,
Oh
,
J. K.
,
Gwon
,
H. C.
, and
Choe
,
Y. H.
, “
Intracoronary Transluminal Attenuation Gradient in Coronary CT Angiography for Determining Coronary Artery Stenosis
,”
JACC Cardiovasc. Imaging
,
4
(
11
), pp.
1149
1157
.10.1016/j.jcmg.2011.09.006
5.
Chow
,
B. J. W.
,
Kass
,
M.
,
Gagné
,
O.
,
Chen
,
L.
,
Yam
,
Y.
,
Dick
,
A.
, and
Wells
,
G. A.
,
2011
, “
Can Differences in Corrected Coronary Opacification Measured With Computed Tomography Predict Resting Coronary Artery Flow?
J. Am. Coll. Cardiol.
,
57
(
11
), pp.
1280
1288
.10.1016/j.jacc.2010.09.072
6.
Stuijfzand
,
W. J.
,
Danad
,
I.
,
Raijmakers
,
P. G.
,
Marcu
,
C. B.
,
Heymans
,
M. W.
,
van Kuijk
,
C. C.
,
van Rossum
,
A. C.
,
Nieman
,
K.
,
Min
,
J. K.
,
Leipsic
,
J.
,
van Royen
,
N.
, and
Knaapen
,
P.
,
2014
, “
Additional Value of Transluminal Attenuation Gradient in CT Angiography to Predict Hemodynamic Significance of Coronary Artery Stenosis
,”
JACC Cardiovasc. Imaging
,
7
(
4
), pp.
374
386
.10.1016/j.jcmg.2013.12.013
7.
Nakanishi
,
R.
, and
Budoff
,
M. J.
,
2014
, “
A New Approach in Risk Stratification by Coronary CT Angiography
,”
Scientifica (Cairo)
,
2014
(2014), p.
278039
.10.1155/2014/278039
8.
Steigner
,
M. L.
,
Mitsouras
,
D.
,
Whitmore
,
A. G.
,
Otero
,
H. J.
,
Wang
,
C.
,
Buckley
,
O.
,
Levit
,
N. A.
,
Hussain
,
A. Z.
,
Cai
,
T.
,
Mather
,
R. T.
,
Smedby
,
O.
,
DiCarli
,
M. F.
, and
Rybicki
,
F. J.
,
2010
, “
Iodinated Contrast Opacification Gradients in Normal Coronary Arteries Imaged With Prospectively ECG-Gated Single Heart Beat 320-Detector Row Computed Tomography
,”
Circ. Cardiovasc. Imaging
,
3
(
2
), pp.
179
186
.10.1161/CIRCIMAGING.109.854307
9.
San Román
,
J. A.
,
Vilacosta
,
I.
,
Castillo
,
J. A.
,
Rollán
,
M. J.
,
Hernández
,
M.
,
Peral
,
V.
,
Garcimartín
,
I.
,
de la Torre
,
M. M.
, and
Fernández-Avilés
,
F.
,
1998
, “
Selection of the Optimal Stress Test for the Diagnosis of Coronary Artery Disease
,”
Heart
,
80
(
4
), pp.
370
376
.10.1136/hrt.80.4.370
10.
Lloyd-Jones
,
D.
,
Adams
,
R. J.
,
Brown
,
T. M.
,
Carnethon
,
M.
,
Dai
,
S.
,
De Simone
,
G.
,
Ferguson
,
T. B.
,
Ford
,
E.
,
Furie
,
K.
,
Gillespie
,
C.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Hailpern
,
S.
,
Ho
,
P. M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Lackland
,
D.
,
Lisabeth
,
L.
,
Marelli
,
A.
,
McDermott
,
M. M.
,
Meigs
,
J.
,
Mozaffarian
,
D.
,
Mussolino
,
M.
,
Nichol
,
G.
,
Roger
,
V. L.
,
Rosamond
,
W.
,
Sacco
,
R.
,
Sorlie
,
P.
,
Stafford
,
R.
,
Thom
,
T.
,
Wasserthiel-Smoller
,
S.
,
Wong
,
N. D.
, and
Wylie-Rosett
,
J.
,
2010
, “
Executive Summary: Heart Disease and Stroke Statistics-2010 Update: A Report From the American Heart Association
,”
Circulation
,
121
(
7
), pp.
46
215
.10.1161/CIRCULATIONAHA.109.192666
11.
Patel
,
M. R.
,
Peterson
,
E. D.
,
Dai
,
D.
,
Brennan
,
J. M.
,
Redberg
,
R. F.
,
Anderson
,
H. V.
,
Brindis
,
R. G.
, and
Douglas
,
P. S.
,
2010
, “
Low Diagnostic Yield of Elective Coronary Angiography
,”
N. Engl. J. Med.
,
363
(
1
), pp.
886
895
.10.1056/NEJMoa0907272
12.
Lange
,
R. A.
, and
Hillis
,
L. D.
,
2003
, “
Cardiology Patient Pages. Diagnostic Cardiac Catheterization
,”
Circulation
,
107
(
17
), pp.
e111
e113
.10.1161/01.CIR.0000070982.94049.A2
13.
Nakazato
,
R.
,
Park
,
H. B.
,
Berman
,
D. S.
,
Gransar
,
H.
,
Koo
,
B. K.
,
Erglis
,
A.
,
Lin
,
F. Y.
,
Dunning
,
A. M.
,
Budoff
,
M. J.
,
Malpeso
,
J.
,
Leipsic
,
J.
, and
Min
,
J. K.
,
2013
, “
Noninvasive Fractional Flow Reserve Derived From Computed Tomography Angiography for Coronary Lesions of Intermediate Stenosis Severity Results From the DeFACTO Study
,”
Circ. Cardiovasc. Imaging
,
6
(
6
), pp.
881
889
.10.1161/CIRCIMAGING.113.000297
14.
Durant
,
J.
,
Waechter
,
I.
,
Hermans
,
R.
,
Weese
,
J.
, and
Aach
,
T.
,
2008
, “
Toward Quantitative Virtual Angiography: Evaluation With In Vitro Studies
,” 5th
IEEE
International Symposium on Biomedical Imaging: From Nano to Macro
, Paris, France, May 14–17, pp.
632
635
.10.1109/ISBI.2008.4541075
15.
Calamante
,
F.
,
Yim
,
P. J.
, and
Cebral
,
J. R.
,
2003
, “
Estimation of Bolus Dispersion Effects in Perfusion MRI Using Image-Based Computational Fluid Dynamics
,”
Neuroimage
,
19
(
2
), pp.
341
353
.10.1016/S1053-8119(03)00090-9
16.
Kim
,
T.
,
Cheer
,
A. Y.
, and
Dwyer
,
H. A.
,
2004
, “
A Simulated Dye Method for Flow Visualization With a Computational Model for Blood Flow
,”
J. Biomech.
,
37
(
8
), pp.
1125
1136
.10.1016/j.jbiomech.2003.12.028
17.
George
,
R. T.
,
Ichihara
,
T.
,
Lima
,
J. A
, and
Lardo
,
A. C.
,
2010
, “
A Method for Reconstructing the Arterial Input Function During Helical CT: Implications for Myocardial Perfusion Distribution Imaging
,”
Radiology
,
255
(
2
), pp.
396
404
.10.1148/radiol.10081121
18.
Foley
,
W. D.
, and
Karcaaltincaba
,
M.
,
2003
, “
Computed Tomography Angiography: Principles and Clinical Applications
,”
J. Comput. Assist Tomogr.
,
27
(
Supp. 1
), pp.
23
30
.10.1097/00004728-200305001-00006
19.
Bishop
,
A. H.
, and
Samady
,
H.
,
2004
, “
Fractional Flow Reserve: Critical Review of an Important Physiologic Adjunct to Angiography
,”
Am. Heart J.
,
147
(
5
), pp.
792
802
.10.1016/j.ahj.2003.12.009
20.
Yoon
,
Y. E.
,
Choi
,
J.-H.
,
Kim
,
J.-H.
,
Park
,
K.-W.
,
Doh
,
J.-H.
,
Kim
,
Y.-J.
,
Koo
,
B.-K.
,
Min
,
J. K.
,
Erglis
,
A.
,
Gwon
,
H.-C.
,
Choe
,
Y. H.
,
Choi
,
D.-J.
,
Kim
,
H.-S.
,
Oh
,
B.-H.
, and
Park
,
Y.-B.
,
2012
, “
Noninvasive Diagnosis of Ischemia-Causing Coronary Stenosis Using CT Angiography: Diagnostic Value of Transluminal Attenuation Gradient and Fractional Flow Reserve Computed From Coronary CT Angiography Compared to Invasively Measured Fractional Flow Reserve
,”
JACC Cardiovasc. Imaging
,
5
(
11
), pp.
1088
1096
.10.1016/j.jcmg.2012.09.002
21.
Taylor
,
G.
,
1953
, “
Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube
,”
Proc. R. Soc. A
,
219
(
1137
), pp.
186
203
.10.1098/rspa.1953.0139
22.
Hozumi
,
T.
,
Yoshida
,
K.
,
Akasaka
,
T.
,
Asami
,
Y.
,
Ogata
,
Y.
,
Takagi
,
T.
,
Kaji
,
S.
,
Kawamoto
,
T.
,
Ueda
,
Y.
, and
Morioka
,
S.
, “
Noninvasive Assessment of Coronary Flow Velocity and Coronary Flow Velocity Reserve in the Left Anterior Descending Coronary Artery by Doppler Echocardiography: Comparison With Invasive Technique
,”
J. Am. Coll. Cardiol.
,
32
(
5
), pp.
1251
1259
.10.1016/S0735-1097(98)00389-1
23.
Funabashi
,
N.
,
Kobayashi
,
Y.
,
Perlroth
,
M.
, and
Rubin
,
G. D.
,
2003
, “
Coronary Artery: Quantitative Evaluation of Normal Diameter Determined With Electron-Beam CT Compared With Cine Coronary Angiography Initial Experience
,”
Radiology
,
226
(
1
), pp.
263
271
.10.1148/radiol.2261011211
24.
Gould
,
K. L.
,
Lipscomb
,
K.
, and
Hamilton
,
G. W.
,
1974
, “
Physiologic Basis for Assessing Critical Coronary Stenosis. Instantaneous Flow Response and Regional Distribution During Coronary Hyperemia as Measures of Coronary Flow Reserve
,”
Am. J. Cardiol.
,
33
(
1
), pp.
87
94
.10.1016/0002-9149(74)90743-7
25.
Wong
,
D. T. L.
,
Ko
,
B. S.
,
Cameron
,
J. D.
,
Nerlekar
,
N.
,
Leung
,
M. C. H.
,
Malaiapan
,
Y.
,
Crossett
,
M.
,
Leong
,
D. P.
,
Worthley
,
S. G.
,
Troupis
,
J.
,
Meredith
,
I. T.
, and
Seneviratne
,
S. K.
,
2013
, “
Transluminal Attenuation Gradient in Coronary Computed Tomography Angiography Is a Novel Noninvasive Approach to the Identification of Functionally Significant Coronary Artery Stenosis: A Comparison With Fractional Flow Reserve
,”
J. Am. Coll. Cardiol.
,
61
(
12
), pp.
1271
1279
.10.1016/j.jacc.2012.12.029
26.
George
,
R. T.
,
Rahsepar
,
A. A.
,
Eslami
,
P.
,
Seo
,
J. H.
,
Mittal
,
R.
,
Zhao
,
D.
,
Guallar
,
E.
,
Jacobson
,
L. P.
,
Budoff
,
M.
,
Post
,
W. S.
, and
Lardo
,
A. C.
,
2014
, “
Abstract 17975: Coronary and Myocardial Blood Flow Measurements Derived From Coronary Computed Tomography Angiography and Transluminal Attenuation Flow Encoding in the Multicenter AIDS Cohort Study
,”
Circulation
,
130
: A17975.
27.
George
,
R. T.
,
Rahsepar
,
A. A.
,
Seo
,
J.-H.
,
Eslami
,
P.
,
Korley
,
F. K.
,
Lardo
,
A. C.
, and
Mittal
,
R.
,
2014
, “
Abstract: Application of Transluminal Attenuation Flow Encoding (TAFE) to Quantify Absolute Coronary Blood Flow
,”
SCCT 9th Annual Science Meeting
, pp.
7
9
.
28.
Lardo
,
A. C.
,
Rahsepar
,
A. A.
,
Seo
,
J. H.
,
Eslami
,
P.
,
Korley
,
F.
,
George
,
R. T.
, and
Flow
,
A.
, “
Computed Tomography Transluminal Attenuation Flow Encoding (TAFE): Formulation, Preclinical Validation, and Clinical Feasibility
,”
JCCT
(in press).
29.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-Alpha Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.10.1115/1.2900803
30.
Barth
,
D.
, and
Jespersen
,
T. J.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. 89–0366.10.2514/6.1989-366
You do not currently have access to this content.