In general, three-dimensional ground reaction forces (GRFs) and ground reaction moments (GRMs) that occur during human gait are measured using a force plate, which are expensive and have spatial limitations. Therefore, we proposed a prediction model for GRFs and GRMs, which only uses plantar pressure information measured from insole pressure sensors with a wavelet neural network (WNN) and principal component analysis-mutual information (PCA-MI). For this, the prediction model estimated GRFs and GRMs with three different gait speeds (slow, normal, and fast groups) and healthy/pathological gait patterns (healthy and adolescent idiopathic scoliosis (AIS) groups). Model performance was validated using correlation coefficients (r) and the normalized root mean square error (NRMSE%) and was compared to the prediction accuracy of the previous methods using the same dataset. As a result, the performance of the GRF and GRM prediction model proposed in this study (slow group: r = 0.840–0.989 and NRMSE% = 10.693–15.894%; normal group: r = 0.847–0.988 and NRMSE% = 10.920–19.216%; fast group: r = 0.823–0.953 and NRMSE% = 12.009–20.182%; healthy group: r = 0.836–0.976 and NRMSE% = 12.920–18.088%; and AIS group: r = 0.917–0.993 and NRMSE% = 7.914–15.671%) was better than that of the prediction models suggested in previous studies for every group and component (p < 0.05 or 0.01). The results indicated that the proposed model has improved performance compared to previous prediction models.

References

References
1.
Favre
,
J.
,
Hayoz
,
M.
,
Erhart-Hledik
,
J. C.
, and
Andriacchi
,
T. P.
,
2012
, “
A Neural Network Model to Predict Knee Adduction Moment During Walking Based on Ground Reaction Force and Anthropometric Measurements
,”
J. Biomech.
,
45
(
4
), pp.
692
698
.10.1016/j.jbiomech.2011.11.057
2.
Nüesch
,
C.
,
Valderrabano
,
V.
,
Huber
,
C.
,
von Tscharner
,
V.
, and
Pagenstert
,
G.
,
2012
, “
Gait Patterns of Asymmetric Ankle Osteoarthritis Patients
,”
Clin. Biomech.
,
27
(
6
), pp.
613
618
.10.1016/j.clinbiomech.2011.12.016
3.
Oh
,
S. E.
,
Choi
,
A.
, and
Mun
,
J. H.
,
2013
, “
Prediction of Ground Reaction Forces During Gait Based on Kinematics and a Neural Network Model
,”
J. Biomech.
,
46
(
14
), pp.
2372
2380
.10.1016/j.jbiomech.2013.07.036
4.
Hori
,
N.
,
Newton
,
R. U.
,
Kawamori
,
N.
,
McGuigan
,
M. R.
,
Kraemer
,
W. J.
, and
Nosaka
,
K.
,
2009
, “
Reliability of Performance Measurements Derived From Ground Reaction Force Data During Countermovement Jump and the Influence of Sampling Frequency
,”
J. Strength Cond. Res.
,
23
(
3
), pp.
874
882
.10.1519/JSC.0b013e3181a00ca2
5.
Nikooyan
,
A. A.
, and
Zadpoor
,
A. A.
,
2012
, “
Effects of Muscle Fatigue on the Ground Reaction Force and Soft-Tissue Vibrations During Running: A Model Study
,”
IEEE Trans. Biomed. Eng.
,
59
(
3
), pp.
797
804
.10.1109/TBME.2011.2179803
6.
Fregly
,
B. J.
,
Reinbolt
,
J. A.
,
Rooney
,
K. L.
,
Mitchell
,
K. H.
, and
Chmielewski
,
T. L.
,
2007
, “
Design of Patient-Specific Gait Modifications for Knee Osteoarthritis Rehabilitation
,”
IEEE Trans. Biomed. Eng.
,
54
(
9
), pp.
1687
1695
.10.1109/TBME.2007.891934
7.
Houck
,
J.
,
Kneiss
,
J.
,
Bukata
,
S. V.
, and
Puzas
,
J. E.
,
2011
, “
Analysis of Vertical Ground Reaction Force Variables During a Sit to Stand Task in Participants Recovering From a Hip Fracture
,”
Clin. Biomech.
,
26
(
5
), pp.
470
476
.10.1016/j.clinbiomech.2010.12.004
8.
Bennell
,
K.
,
Crossley
,
K.
,
Jayarajan
,
J.
,
Walton
,
E.
,
Warden
,
S.
,
Kiss
,
Z. S.
, and
Wrigley
,
T.
,
2004
, “
Ground Reaction Forces and Bone Parameters in Females With Tibial Stress Fracture
,”
Med. Sci. Sports Exercise
,
36
(
3
), pp.
397
404
.10.1249/01.MSS.0000117116.90297.E1
9.
Turcot
,
K.
,
Aissaoui
,
R.
,
Boivin
,
K.
,
Pelletier
,
M.
,
Hagemeister
,
N.
, and
de Guise
,
J. A.
,
2008
, “
New Accelerometric Method to Discriminate Between Asymptomatic Subjects and Patients With Medial Knee Osteoarthritis During 3-D Gait
,”
IEEE Trans. Biomed. Eng.
,
55
(
4
), pp.
1415
1422
.10.1109/TBME.2007.912428
10.
Zadpoor
,
A. A.
, and
Nikooyan
,
A. A.
,
2011
, “
The Relationship Between Lower-Extremity Stress Fractures and the Ground Reaction Force: A Systematic Review
,”
Clin. Biomech.
,
26
(
1
), pp.
23
28
.10.1016/j.clinbiomech.2010.08.005
11.
Choi
,
A.
,
Lee
,
J.
, and
Mun
,
J. H.
,
2013
, “
Ground Reaction Forces Predicted by Using Artificial Neural Network During Asymmetric Movements
,”
Int. J. Precis. Eng. Manuf.
,
14
(
3
), pp.
475
483
.10.1007/s12541-013-0064-4
12.
Wu
,
J. Z.
,
Chiou
,
S. S.
, and
Pan
,
C. S.
,
2009
, “
Analysis of Musculoskeletal Loadings in Lower Limbs During Stilts Walking in Occupational Activity
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1177
1189
.10.1007/s10439-009-9674-5
13.
Shin
,
K. Y.
,
Rim
,
Y. H.
,
Kim
,
Y. S.
,
Kim
,
H. S.
,
Han
,
J. W.
,
Choi
,
C. H.
,
Lee
,
K. S.
, and
Mun
,
J. H.
,
2010
, “
A Joint Normalcy Index to Evaluate Patients With Gait Pathologies in the Functional Aspects of Joint Mobility
,”
J. Mech. Sci. Technol.
,
24
(
9
), pp.
1901
1909
.10.1007/s12206-010-0608-9
14.
Tao
,
W.
,
Liu
,
T.
,
Zheng
,
R.
, and
Feng
,
H.
,
2012
, “
Gait Analysis Using Wearable Sensors
,”
Sensors
,
12
(
2
), pp.
2255
2283
.10.3390/s120202255
15.
O'Donovan
,
K. J.
,
Kamnik
,
R.
,
O'Keeffe
,
D. T.
, and
Lyons
,
G. M.
,
2007
, “
An Inertial and Magnetic Sensor Based Technique for Joint Angle Measurement
,”
J. Biomech.
,
40
(
12
), pp.
2604
2611
.10.1016/j.jbiomech.2006.12.010
16.
Liu
,
T.
,
Inoue
,
Y.
, and
Shibata
,
K.
,
2010
, “
A Wearable Ground Reaction Force Sensor System and Its Application to the Measurement of Extrinsic Gait Variability
,”
Sensors
,
10
(
11
), pp.
10240
10255
.
17.
Oosterlinck
,
M.
,
Pille
,
F.
,
Huppes
,
T.
,
Gasthuys
,
F.
, and
Back
,
W.
,
2010
, “
Comparison of Pressure Plate and Force Plate Gait Kinetics in Sound Warmbloods at Walk and Trot
,”
Vet. J.
,
186
(
3
), pp.
347
351
.10.1016/j.tvjl.2009.08.024
18.
Liu
,
T.
,
Inoue
,
Y.
, and
Shibata
,
K.
,
2010
, “
A Wearable Force Plate System for the Continuous Measurement of Triaxial Ground Reaction Force in Biomechanical Applications
,”
Meas. Sci. Technol.
,
21
(
8
), p.
085804
.10.1088/0957-0233/21/8/085804
19.
Abdul Razak
,
A. H.
,
Zayegh
,
A.
,
Begg
,
R. K.
, and
Wahab
,
Y.
,
2012
, “
Foot Plantar Pressure Measurement System: A Review
,”
Sensors
,
12
(
7
), pp.
9884
9912
.10.3390/s120709884
20.
Bae
,
J.
, and
Tomizuka
,
M.
,
2013
, “
A Tele-Monitoring System for Gait Rehabilitation With an Inertial Measurement Unit and a Shoe-Type Ground Reaction Force Sensor
,”
Mechatronics
,
23
(
6
), pp.
646
651
.10.1016/j.mechatronics.2013.06.007
21.
Howell
,
A. M.
,
Kobayashi
,
T.
,
Hayes
,
H. A.
,
Foreman
,
K. B.
, and
Bamberg
,
S. J. M.
,
2013
, “
Kinetic Gait Analysis Using a Low-Cost Insole
,”
IEEE Trans. Biomed. Eng.
,
60
(
12
), pp.
3284
3290
.10.1109/TBME.2013.2250972
22.
Muro-de-la-Herran
,
A.
,
Garcia-Zapirain
,
B.
, and
Mendez-Zorrilla
,
A.
,
2014
, “
Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications
,”
Sensors
,
14
(
2
), pp.
3362
3394
.10.3390/s140203362
23.
Ohtonen
,
O.
,
Lindinger
,
S.
,
Lemmettyla
,
T.
,
Seppala
,
S.
, and
Linnamo
,
V.
,
2013
, “
Validation of Portable 2D Force Binding Systems for Cross-Country Skiing
,”
Sports Eng.
,
16
(
4
), pp.
281
296
.10.1007/s12283-013-0136-9
24.
Joo
,
S. B.
,
Oh
,
S. E.
,
Sim
,
T.
,
Kim
,
H.
, and
Mun
,
J. H.
,
2014
, “
Prediction of Gait Speed From Plantar Pressure Using Artificial Neural Networks
,”
Expert Syst. Appl.
,
41
(
16
), pp.
7398
7405
.10.1016/j.eswa.2014.06.002
25.
Savelberg
,
H.
, and
Lange
,
A. L. H.
,
1999
, “
Assessment of the Horizontal, Fore-Aft Component of the Ground Reaction Force From Insole Pressure Patterns by Using Artificial Neural Networks
,”
Clin. Biomech.
,
14
(
8
), pp.
585
592
.10.1016/S0268-0033(99)00036-4
26.
Forner Cordero
,
A.
,
Koopman
,
H. J. F. M.
, and
van der Helm
,
F. C. T.
,
2004
, “
Use of Pressure Insoles to Calculate the Complete Ground Reaction Forces
,”
J. Biomech.
,
37
(
9
), pp.
1427
1432
.10.1016/j.jbiomech.2003.12.016
27.
Fong
,
D. T. P.
,
Chan
,
Y. Y.
,
Hong
,
Y.
,
Yung
,
P. S. H.
,
Fung
,
K. Y.
, and
Chan
,
K. M.
,
2008
, “
Estimating the Complete Ground Reaction Forces With Pressure Insoles in Walking
,”
J. Biomech.
,
41
(
11
), pp.
2597
2601
.10.1016/j.jbiomech.2008.05.007
28.
Rouhani
,
H.
,
Favre
,
J.
,
Crevoisier
,
X.
, and
Aminian
,
K.
,
2010
, “
Ambulatory Assessment of 3D Ground Reaction Force Using Plantar Pressure Distribution
,”
Gait Posture
,
32
(
3
), pp.
311
316
.10.1016/j.gaitpost.2010.05.014
29.
Cordova
,
J. J.
,
Yu
,
W.
, and
Li
,
X.
,
2012
, “
Haar Wavelet Neural Networks for Nonlinear System Identification
,”
2012 IEEE International Symposium on Intelligent Control (ISIC)
, pp.
276
281
.
30.
Gómez-Ramos
,
E.
, and
Venegas-Martínez
,
F.
,
2013
, “
A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series
,”
Analítika
,
6
(
2
), pp.
7
15
.http://www.analitika.ec/pdf/vol6/ANADic2013_7_15.pdf
31.
Noori
,
R.
,
Khakpour
,
A.
,
Omidvar
,
B.
, and
Farokhnia
,
A.
,
2010
, “
Comparison of ANN and Principal Component Analysis-Multivariate Linear Regression Models for Predicting the River Flow Based on Developed Discrepancy Ratio Statistic
,”
Expert Syst. Appl.
,
37
(
8
), pp.
5856
5862
.10.1016/j.eswa.2010.02.020
32.
Ardestani
,
M. M.
,
Zhang
,
X.
,
Wang
,
L.
,
Lian
,
Q.
,
Liu
,
Y.
,
He
,
J.
,
Li
,
D.
, and
Jin
,
Z.
,
2014
, “
Human Lower Extremity Joint Moment Prediction: A Wavelet Neural Network Approach
,”
Expert Syst. Appl.
,
41
(
9
), pp.
4422
4433
.10.1016/j.eswa.2013.11.003
33.
Subasi
,
A.
,
2007
, “
EEG Signal Classification Using Wavelet Feature Extraction and a Mixture of Expert Model
,”
Expert Syst. Appl.
,
32
(
4
), pp.
1084
1093
.10.1016/j.eswa.2006.02.005
34.
Esen
,
H.
,
Ozgen
,
F.
,
Esen
,
M.
, and
Sengur
,
A.
,
2009
, “
Artificial Neural Network and Wavelet Neural Network Approaches for Modelling of a Solar Air Heater
,”
Expert Syst. Appl.
,
36
(
8
), pp.
11240
11248
.10.1016/j.eswa.2009.02.073
35.
Savelberg
,
H. H. C. M.
, and
de Lange
,
A. L. H.
,
1999
, “
Assessment of the Horizontal, Fore-Aft Component of the Ground Reaction Force From Insole Pressure Patterns by Using Artificial Neural Networks
,”
Clin. Biomech.
,
14
(
8
), pp.
585
592
.10.1016/S0268-0033(99)00036-4
36.
Miller
,
N. H.
,
2011
, “
Idiopathic Scoliosis: Cracking the Genetic Code and What Does It Mean
,”
J. Pediatr. Orthop.
,
31
(
Suppl. 1
), pp.
S49
S52
.10.1097/BPO.0b013e318202bfe2
37.
Wajchenberg
,
M.
,
Lazar
,
M.
,
Cavaçana
,
N.
,
Martins
,
D. E.
,
Licinio
,
L.
,
Puertas
,
E. B.
,
Landim
,
E.
,
Zatz
,
M.
, and
Ishida
,
A.
,
2010
, “
Genetic Aspects of Adolescent Idiopathic Scoliosis in a Family With Multiple Affected Members: A Research Article
,”
Scoliosis
,
5
(
7
), pp.
1
4
.http://www.scoliosisjournal.com/content/5/1/7
38.
Giakas
,
G.
,
Baltzopoulos
,
V.
,
Dangerfield
,
P. H.
,
Dorgan
,
J. C.
, and
Dalmira
,
S.
,
1996
, “
Comparison of Gait Patterns Between Healthy and Scoliotic Patients Using Time and Frequency Domain Analysis of Ground Reaction Forces
,”
Spine
,
21
(
19
), pp.
2235
2242
.10.1097/00007632-199610010-00011
39.
Bruyneel
,
A. V.
,
Chavet
,
P.
,
Bollini
,
G.
,
Allard
,
P.
,
Berton
,
E.
, and
Mesure
,
S.
,
2009
, “
Dynamical Asymmetries in Idiopathic Scoliosis During Forward and Lateral Initiation Step
,”
Eur. Spine J.
,
18
(
2
), pp.
188
195
.10.1007/s00586-008-0864-x
40.
Chockalingam
,
N.
,
Bandi
,
S.
,
Rahmatalla
,
A.
,
Dangerfield
,
P. H.
, and
Ahmed
,
E. N.
,
2008
, “
Assessment of the Centre of Pressure Pattern and Moments About S2 in Scoliotic Subjects During Normal Walking
,”
Scoliosis
,
3
(
10
), pp.
1
6
.10.1186/1748-7161-3-10
41.
Jamshidi
,
N.
,
Rostami
,
M.
,
Najarian
,
S.
,
Menhaj
,
M. B.
,
Saadatnia
,
M.
, and
Salami
,
F.
,
2010
, “
Differences in Center of Pressure Trajectory Between Normal and Steppage Gait
,”
J. Res. Med. Sci.
,
15
(
1
), pp.
33
40
.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082780/
42.
Chockalingam
,
N.
,
Dangerfield
,
P. H.
,
Rahmatalla
,
A.
,
Ahmed
,
E. N.
, and
Cochrane
,
T.
,
2004
, “
Assessment of Ground Reaction Force During Scoliotic Gait
,”
Eur. Spine J.
,
13
(
8
), pp.
750
754
.10.1007/s00586-004-0762-9
43.
Keller
,
T. S.
,
Weisberger
,
A. M.
,
Ray
,
J. L.
,
Hasan
,
S. S.
,
Shiavi
,
R. G.
, and
Spengler
,
D. M.
,
1996
, “
Relationship Between Vertical Ground Reaction Force and Speed During Walking, Slow Jogging, and Running
,”
Clin. Biomech.
,
11
(
5
), pp.
253
259
.10.1016/0268-0033(95)00068-2
44.
Moisio
,
K. C.
,
Sumner
,
D. R.
,
Shott
,
S.
, and
Hurwitz
,
D. E.
,
2003
, “
Normalization of Joint Moments During Gait: A Comparison of Two Techniques
,”
J. Biomech.
,
36
(
4
), pp.
599
603
.10.1016/S0021-9290(02)00433-5
45.
Garrido
,
M.
, and
Grajal
,
J.
,
2013
, “
Continuous-Flow Variable-Length Memoryless Linear Regression Architecture
,”
Electron. Lett.
,
49
(
24
), pp.
1567
1569
.10.1049/el.2013.2106
46.
Kocyigit
,
Y.
,
Alkan
,
A.
, and
Erol
,
H.
,
2008
, “
Classification of EEG Recordings by Using Fast Independent Component Analysis and Artificial Neural Network
,”
J. Med. Syst.
,
32
(
1
), pp.
17
20
.10.1007/s10916-007-9102-z
47.
Vahdani
,
B.
,
Iranmanesh
,
S. H.
,
Mousavi
,
S. M.
, and
Abdollahzade
,
M.
,
2012
, “
A Locally Linear Neuro-Fuzzy Model for Supplier Selection in Cosmetics Industry
,”
Appl. Math. Modell.
,
36
(
10
), pp.
4714
4727
.10.1016/j.apm.2011.12.006
48.
Bouckaert
,
R. R.
,
2003
, “
Choosing Between Two Learning Algorithms Based on Calibrated Tests
,”
20th International Conference on Machine Learning (ICML-2003)
, pp.
1
8
.
49.
Refaeilzadeh
,
P.
,
Tang
,
L.
, and
Liu
,
H.
,
2009
, “
Cross-Validation
,”
Encyclopedia of Database Systems
,
Springer
,
New York
, pp.
532
538
.
50.
Lu
,
Z.
, and
Chen
,
W.
,
2007
, “
Fast and Robust 3-D Image Registration Algorithm Based on Principal Component Analysis
,”
1st International Conference on Bioinformatics and Biomedical Engineering
, 2007 (ICBBE 2007), pp.
872
875
.
51.
Chen
,
C.
, and
Yan
,
X.
,
2013
, “
Transforming Input Variables for RBFN Based on PCA-ASH Multivariate Correlation Analysis and Its Application
,”
Neural Comput. Appl.
,
22
(
1
), pp.
101
111
.10.1007/s00521-012-0968-4
52.
Kolmogorov
,
A. N.
,
1957
, “
The Representation of Continuous Functions of Many Variables by Superposition of Continuous Functions of One Variable and Addition
,”
Dokl. Akad. Nauk SSSR
,
114
(
5
), pp.
953
956
.
53.
Feng
,
L. H.
, and
Lu
,
J.
,
2010
, “
The Practical Research on Flood Forecasting Based on Artificial Neural Networks
,”
Expert Syst. Appl.
,
37
(
4
), pp.
2974
2977
.10.1016/j.eswa.2009.09.037
54.
Zainuddin
,
Z.
, and
Pauline
,
O.
,
2011
, “
Modified Wavelet Neural Network in Function Approximation and Its Application in Prediction of Time-Series Pollution Data
,”
Appl. Soft Comp.
,
11
(
8
), pp.
4866
4874
.10.1016/j.asoc.2011.06.013
55.
Wang
,
X.
,
Li
,
A.
,
Jiang
,
Z.
, and
Feng
,
H.
,
2006
, “
Missing Value Estimation for DNA Microarray Gene Expression Data by Support Vector Regression Imputation and Orthogonal Coding Scheme
,”
BMC Bioinf.
,
7
(
32
), pp.
1
10
.10.1186/1471-2105-7-32
56.
Van der Smagt
,
P.
, and
Hirzinger
,
G.
,
2012
, “
Solving the Ill-Conditioning in Neural Network Learning
,”
Neural Networks: Tricks of the Trade (Lecture Notes in Computer Science)
, Vol.
7700
,
G. B.
Orr
, and
K. R.
Müller
, eds.,
Springer
,
Berlin, Germany
, pp.
193
206
.
You do not currently have access to this content.