Rotator cuff tears are a common problem in patients over the age of 50 yr. Tear propagation is a potential contributing factor to the failure of physical therapy for treating rotator cuff tears, thus requiring surgical intervention. However, the evolution of tears within the rotator cuff is not well understood yet. The objective of this study is to establish a computational model to quantify initiation of tear propagation in the supraspinatus tendon and examine the effect of tear size and location. A 3D finite element (FE) model of the supraspinatus tendon was constructed from images of a healthy cadaveric tendon. A tear of varying length was placed at six different locations within the tendon. A fiber-reinforced Mooney–Rivlin material model with spatial variation in material properties along the anterior–posterior (AP) axis was utilized to obtain the stress state of the computational model under uniaxial stretch. Material parameters were calibrated by comparing computational and experimental stress–strain response and used to validate the computational model. The stress state of the computational model was contrasted against the spatially varying material strength to predict the critical applied stretch at which a tear starts propagating further. It was found that maximum principal stress (as well as the strain) was localized at the tips of the tear. The computed critical stretch was significantly lower for the posterior tip of the tear than for the anterior tip suggesting a propensity to propagate posteriorly. Onset of tear propagation was strongly correlated with local material strength and stiffness in the vicinity of the tear tip. Further, presence of a stress-shielded zone along the edges of the tear was observed. This study illustrates the complex interplay between geometry and material properties of tendon up to the initiation of tear propagation. Future work will examine the evolution of tears during the propagation process as well as under more complex loading scenarios.

References

References
1.
Yamaguchi
,
K.
,
Ditsios
,
K.
,
Middleton
,
W. D.
,
Hildebolt
,
C. F.
,
Galatz
,
L. M.
, and
Teefey
,
S. A.
,
2006
, “
The Demographic and Morphological Features of Rotator Cuff Disease. A Comparison of Asymptomatic and Symptomatic Shoulders
,”
J. Bone Jt. Surg. Am.
,
88
(
8
), pp.
1699
1704
.10.2106/JBJS.E.00835
2.
Nho
,
S. J.
,
Yadav
,
H.
,
Shindle
,
M. K.
, and
Macgillivray
,
J. D.
,
2008
, “
Rotator Cuff Degeneration: Etiology and Pathogenesis
,”
Am. J. Sports Med.
,
36
(
5
), pp.
987
993
.10.1177/0363546508317344
3.
Matava
,
M. J.
,
Purcell
,
D. B.
, and
Rudzki
,
J. R.
,
2005
, “
Partial-Thickness Rotator Cuff Tears
,”
Am. J. Sports Med.
,
33
(
9
), pp.
1405
1417
.10.1177/0363546505280213
4.
Baydar
,
M.
,
Akalin
,
E.
,
El
,
O.
,
Gulbahar
,
S.
,
Bircan
,
C.
,
Akgul
,
O.
,
Manisali
,
M.
,
Orhan
,
B. T.
, and
Kizil
,
R.
,
2009
, “
The Efficacy of Conservative Treatment in Patients With Full-Thickness Rotator Cuff Tears
,”
Rheumatol. Int.
,
29
(
6
), pp.
623
628
.10.1007/s00296-008-0733-2
5.
Mall
,
N. A.
,
Kim
,
H. M.
,
Keener
,
J. D.
,
Steger-May
,
K.
,
Teefey
,
S. A.
,
Middleton
,
W. D.
,
Stobbs
,
G.
, and
Yamaguchi
,
K.
,
2010
, “
Symptomatic Progression of Asymptomatic Rotator Cuff Tears: A Prospective Study of Clinical and Sonographic Variables
,”
J. Bone Jt. Surg. Am.
,
92
(
16
), pp.
2623
2633
.10.2106/JBJS.I.00506
6.
Maman
,
E.
,
Harris
,
C.
,
White
,
L.
,
Tomlinson
,
G.
,
Shashank
,
M.
, and
Boynton
,
E.
,
2009
, “
Outcome of Nonoperative Treatment of Symptomatic Rotator Cuff Tears Monitored by Magnetic Resonance Imaging
,”
J. Bone Jt. Surg. Am.
,
91
(
8
), pp.
1898
1906
.10.2106/JBJS.G.01335
7.
Bartolozzi
,
A.
,
Andreychik
,
D.
, and
Ahmad
,
S.
,
1994
, “
Determinants of Outcome in the Treatment of Rotator Cuff Disease
,”
Clin. Orthop. Relat. Res.
,
308
, pp.
90
97
.
8.
Uhthoff
,
H. K.
,
Coletta
,
E.
, and
Trudel
,
G.
,
2014
, “
Effect of Timing of Surgical SSP Tendon Repair on Muscle Alterations
,”
J. Orthop. Res.
,
32
(
11
), pp.
1430
1435
.10.1002/jor.22692
9.
Lahteenmaki
,
H. E.
,
Virolainen
,
P.
,
Hiltunen
,
A.
,
Heikkila
,
J.
, and
Nelimarkka
,
O. I.
,
2006
, “
Results of Early Operative Treatment of Rotator Cuff Tears With Acute Symptoms
,”
J. Shoulder Elbow Surg.
,
15
(
2
), pp.
148
153
.10.1016/j.jse.2005.07.006
10.
Pedowitz
,
R. A.
,
Yamaguchi
,
K.
,
Ahmad
,
C. S.
,
Burks
,
R. T.
,
Flatow
,
E. L.
,
Green
,
A.
,
Wies
,
J. L.
,
St Andre
,
J.
,
Boyer
,
K.
,
Iannotti
,
J. P.
,
Miller
,
B. S.
,
Tashjian
,
R.
,
Watters
,
W. C.
, 3rd
,
Weber
,
K.
,
Turkelson
,
C. M.
,
Raymond
,
L.
,
Sluka
,
P.
, and
McGowan
,
R.
,
2012
, “
American Academy of Orthopaedic Surgeons Clinical Practice Guideline on: Optimizing the Management of Rotator Cuff Problems
,”
J. Bone Jt. Surg. Am.
,
94
(
2
), pp.
163
167
.10.2106/JBJS.K.01368
11.
Nakamura
,
Y.
,
Yokoya
,
S.
,
Mochizuki
,
Y.
,
Harada
,
Y.
,
Kikugawa
,
K.
, and
Ochi
,
M.
,
2014
, “
Monitoring of Progression of Nonsurgically Treated Rotator Cuff Tears by Magnetic Resonance Imaging
,”
J. Orthop. Sci.
,
20
(
2
), pp.
314
320
.10.1007/s00776-014-0680-6
12.
Loehr
,
J. F.
, and
Uhthoff
,
H. K.
,
1987
, “
The Pathogenesis of Degenerative Rotator Cuff Tears
,”
Orthop. Trans.
,
11
, p.
237
.
13.
Kim
,
H. M.
,
Dahiya
,
N.
,
Teefey
,
S. A.
,
Middleton
,
W. D.
,
Stobbs
,
G.
,
Steger-May
,
K.
,
Yamaguchi
,
K.
, and
Keener
,
J. D.
,
2010
, “
Location and Initiation of Degenerative Rotator Cuff Tears: An Analysis of Three Hundred and Sixty Shoulders
,”
J. Bone Jt. Surg. Am.
,
92
(
5
), pp.
1088
1096
.10.2106/JBJS.I.00686
14.
Andarawis-Puri
,
N.
,
Ricchetti
,
E. T.
, and
Soslowsky
,
L. J.
,
2009
, “
Rotator Cuff Tendon Strain Correlates With Tear Propagation
,”
J. Biomech.
,
42
(
2
), pp.
158
163
.10.1016/j.jbiomech.2008.10.020
15.
Miller
,
R. M.
,
Fujimaki
,
Y.
,
Araki
,
D.
,
Musahl
,
V.
, and
Debski
,
R. E.
,
2014
, “
Strain Distribution Due to Propagation of Tears in the Anterior Supraspinatus Tendon
,”
J. Orthop. Res.
,
32
(
10
), pp.
1283
1289
.10.1002/jor.22675
16.
Sano
,
H.
,
Wakabayashi
,
I.
, and
Itoi
,
E.
,
2006
, “
Stress Distribution in the Supraspinatus Tendon With Partial-Thickness Tears: An Analysis Using Two-Dimensional Finite Element Model
,”
J. Shoulder Elbow Surg.
,
15
(
1
), pp.
100
105
.10.1016/j.jse.2005.04.003
17.
Wakabayashi
,
I.
,
Itoi
,
E.
,
Sano
,
H.
,
Shibuya
,
Y.
,
Sashi
,
R.
,
Minagawa
,
H.
, and
Kobayashi
,
M.
,
2003
, “
Mechanical Environment of the Supraspinatus Tendon: A Two-Dimensional Finite Element Model Analysis
,”
J. Shoulder Elbow Surg.
,
12
(
6
), pp.
612
617
.10.1016/S1058-2746(03)00214-3
18.
Luo
,
Z. P.
,
Hsu
,
H. C.
,
Grabowski
,
J. J.
,
Morrey
,
B. F.
, and
An
,
K. N.
,
1998
, “
Mechanical Environment Associated With Rotator Cuff Tears
,”
J. Shoulder Elbow Surg.
,
7
(
6
), pp.
616
620
.10.1016/S1058-2746(98)90010-6
19.
Inoue
,
A.
,
Chosa
,
E.
,
Goto
,
K.
, and
Tajima
,
N.
,
2013
, “
Nonlinear Stress Analysis of the Supraspinatus Tendon Using Three-Dimensional Finite Element Analysis
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
21
(
5
), pp.
1151
1157
.10.1007/s00167-012-2008-4
20.
Seki
,
N.
,
Itoi
,
E.
,
Shibuya
,
Y.
,
Wakabayashi
,
I.
,
Sano
,
H.
,
Sashi
,
R.
,
Minagawa
,
H.
,
Yamamoto
,
N.
,
Abe
,
H.
,
Kikuchi
,
K.
,
Okada
,
K.
, and
Shimada
,
Y.
,
2008
, “
Mechanical Environment of the Supraspinatus Tendon: Three-Dimensional Finite Element Model Analysis
,”
J. Orthop. Sci.
,
13
(
4
), pp.
348
353
.10.1007/s00776-008-1240-8
21.
Sano
,
H.
,
Hatta
,
T.
,
Yamamoto
,
N.
, and
Itoi
,
E.
,
2013
, “
Stress Distribution Within Rotator Cuff Tendons With a Crescent-Shaped and an L-Shaped Tear
,”
Am. J. Sports Med.
,
41
(
10
), pp.
2262
2269
.10.1177/0363546513497565
22.
Itoi
,
E.
,
Berglund
,
L. J.
,
Grabowski
,
J. J.
,
Schultz
,
F. M.
,
Growney
,
E. S.
,
Morrey
,
B. F.
, and
An
,
K. N.
,
1995
, “
Tensile Properties of the Supraspinatus Tendon
,”
J. Orthop. Res.
,
13
(
4
), pp.
578
584
.10.1002/jor.1100130413
23.
Matsuhashi
,
T.
,
Hooke
,
A. W.
,
Zhao
,
K. D.
,
Goto
,
A.
,
Sperling
,
J. W.
,
Steinmann
,
S. P.
, and
An
,
K. N.
,
2013
, “
Tensile Properties of a Morphologically Split Supraspinatus Tendon
,”
Clin. Anat.
,
27
(
5
), pp.
702
706
.10.1002/ca.22322
24.
Mergheim
,
J.
,
Kuhl
,
E.
, and
Steinmann
,
P.
,
2005
, “
A Finite Element Method for the Computational Modelling of Cohesive Cracks
,”
Int. J. Numer. Methods Eng.
,
63
(
2
), pp.
276
289
.10.1002/nme.1286
25.
Maiti
,
S.
,
Ghosh
,
D.
, and
Subhash
,
G.
,
2009
, “
A Generalized Cohesive Element Technique for Arbitrary Crack Motion
,”
Finite Elem. Anal. Des.
,
45
(
8–9
), pp.
501
510
.10.1016/j.finel.2009.02.003
26.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
,
2010
, “
Tensile Properties and Fiber Alignment of Human Supraspinatus Tendon in the Transverse Direction Demonstrate Inhomogeneity, Nonlinearity, and Regional Isotropy
,”
J. Biomech.
,
43
(
4
), pp.
727
732
.10.1016/j.jbiomech.2009.10.017
27.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
,
2009
, “
Effect of Fiber Distribution and Realignment on the Nonlinear and Inhomogeneous Mechanical Properties of Human Supraspinatus Tendon Under Longitudinal Tensile Loading
,”
J. Orthop. Res.
,
27
(
12
), pp.
1596
1602
.10.1002/jor.20938
28.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
,
1996
, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
135
(
1–2
), pp.
107
128
.10.1016/0045-7825(96)01035-3
29.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
30.
Clark
,
J. M.
, and
Harryman
,
D. T.
,
1992
, “
Tendons, Ligaments, and Capsule of the Rotator Cuff
,”
J. Bone Jt. Surg.
,
74
(
5
), pp.
713
725
.
31.
Szczesny
,
S. E.
,
Peloquin
,
J. M.
,
Cortes
,
D. H.
,
Kadlowec
,
J. A.
,
Soslowsky
,
L. J.
, and
Elliott
,
D. M.
,
2012
, “
Biaxial Tensile Testing and Constitutive Modeling of Human Supraspinatus Tendon
,”
ASME J. Biomech. Eng.
,
134
(
2
), p.
021004
.10.1115/1.4005852
32.
Pal
,
S.
,
Tsamis
,
A.
,
Pasta
,
S.
,
D'Amore
,
A.
,
Gleason
,
T. G.
,
Vorp
,
D. A.
, and
Maiti
,
S.
,
2014
, “
A Mechanistic Model on the Role of “Radially-Running” Collagen Fibers on Dissection Properties of Human Ascending Thoracic Aorta
,”
J. Biomech.
,
47
(
5
), pp.
981
988
.10.1016/j.jbiomech.2014.01.005
33.
Henderson
,
S. E.
,
Verdelis
,
K.
,
Maiti
,
S.
,
Pal
,
S.
,
Chung
,
W. L.
,
Chou
,
D.-T.
,
Kumta
,
P. N.
, and
Almarza
,
A. J.
,
2014
, “
Magnesium Alloys as a Biomaterial for Degradable Craniofacial Screws
,”
Acta Biomater.
,
10
(
5
), pp.
2323
2332
.10.1016/j.actbio.2013.12.040
34.
Özkaya
,
N.
,
Nordin
,
M.
,
Goldsheyder
,
D.
, and
Leger
,
D.
,
2012
,
Fundamentals of Biomechanics
,
Springer
,
New York
.
35.
Huang
,
C. Y.
,
Wang
,
V. M.
,
Pawluk
,
R. J.
,
Bucchieri
,
J. S.
,
Levine
,
W. N.
,
Bigliani
,
L. U.
,
Mow
,
V. C.
, and
Flatow
,
E. L.
,
2005
, “
Inhomogeneous Mechanical Behavior of the Human Supraspinatus Tendon Under Uniaxial Loading
,”
J. Orthop. Res.
,
23
(
4
), pp.
924
930
.10.1016/j.orthres.2004.02.016
You do not currently have access to this content.