Traumatic injuries and gradual wear-and-tear of articular cartilage (AC) that can lead to osteoarthritis (OA) have been hypothesized to result from tissue damage to AC. In this study, a previous equilibrium constitutive model of AC was extended to a constitutive damage articular cartilage (CDAC) model. In particular, anisotropic collagen (COL) fibril damage and isotropic glycosaminoglycan (GAG) damage were considered in a 3D formulation. In the CDAC model, time-dependent effects, such as viscoelasticity and poroelasticity, were neglected, and thus all results represent the equilibrium response after all time-dependent effects have dissipated. The resulting CDAC model was implemented in two different finite-element models. The first simulated uniaxial tensile loading to failure, while the second simulated spherical indentation with a rigid indenter displaced into a bilayer AC sample. Uniaxial tension to failure simulations were performed for three COL fibril Lagrangian failure strain (i.e., the maximum elastic COL fibril strain) values of 15%, 30%, and 45%, while spherical indentation simulations were performed with a COL fibril Lagrangian failure strain of 15%. GAG damage parameters were held constant for all simulations. Our results indicated that the equilibrium postyield tensile response of AC and the macroscopic tissue failure strain are highly dependent on COL fibril Lagrangian failure strain. The uniaxial tensile response consisted of an initial nonlinear ramp region due to the recruitment of intact fibrils followed by a rapid decrease in tissue stress at initial COL fibril failure, as a result of COL fibril damage which continued until ultimate tissue failure. In the spherical indentation simulation, damage to both the COL fibril and GAG constituents was located only in the superficial zone (SZ) and near the articular surface with tissue thickening following unloading. Spherical indentation simulation results are in agreement with published experimental observations. Our results indicate that the proposed CDAC model is capable of simulating both initial small magnitude damage as well as complete failure of AC tissue. The results of this study may help to elucidate the mechanisms of AC tissue damage, which initiate and propagate OA.

References

References
1.
Maroudas
,
A.
,
Bayliss
,
M. T.
, and
Venn
,
M. F.
,
1980
, “
Further Studies on the Composition of Human Femoral Head Cartilage
,”
Ann. Rheum. Dis.
,
39
(
5
), pp.
514
523
.10.1136/ard.39.5.514
2.
Brocklehurst
,
R.
,
Bayliss
,
M. T.
,
Maroudas
,
A.
,
Coysh
,
H. L.
,
Freeman
,
M. A. R.
,
Revell
,
P. A.
, and
Ali
,
S. Y.
,
1984
, “
The Composition of Normal and Osteoarthritic Articular Cartilage From Human Knee Joints
,”
J. Bone Jt. Surg. Am.
,
66
(
1
), pp.
95
106
.http://jbjs.org/content/66/1/95.abstract
3.
Asanbaeva
,
A.
,
Tam
,
J.
,
Schumacher
,
B. L.
,
Klisch
,
S. M.
,
Masuda
,
K.
, and
Sah
,
R. L.
,
2008
, “
Articular Cartilage Tensile Integrity: Modulation by Matrix Depletion is Maturation-Dependent
,”
Arch. Biochem. Biophys.
,
474
(
1
), pp.
175
182
.10.1016/j.abb.2008.03.012
4.
Kiviranta
,
P.
,
Rieppo
,
J.
,
Korhonen
,
R. K.
,
Julkunen
,
P.
,
Töyräs
,
J.
, and
Jurvelin
,
J. S.
,
2006
, “
Collagen Network Primarily Controls Poisson's Ratio of Bovine Articular Cartilage in Compression
,”
J. Orthop. Res.
,
24
(
4
), pp.
690
699
.10.1002/jor.20107
5.
Ficklin
,
T.
,
Thomas
,
G.
,
Barthel
,
J. C.
,
Asanbaeva
,
A.
,
Thonar
,
E. J.
,
Masuda
,
K.
,
Chen
,
A. C.
,
Sah
,
R. L.
,
Davol
,
A.
, and
Klisch
,
S. M.
,
2007
, “
Articular Cartilage Mechanical and Biochemical Property Relations Before and After In Vitro Growth
,”
J. Biomech.
,
40
(
16
), pp.
3607
3614
.10.1016/j.jbiomech.2007.06.005
6.
Williams
,
G. M.
,
Dills
,
K. J.
,
Flores
,
C. R.
,
Stender
,
M. E.
,
Stewart
,
K. M.
,
Nelson
,
L. M.
,
Albert
,
C. C.
,
Masuda
,
K.
,
Hazelwood
,
S. J.
,
Klisch
,
S. M.
, and
Sah
,
R. L.
,
2010
, “
Differential Regulation of Immature Articular Cartilage Compressive Moduli and Poisson's Ratios by In Vitro Stimulation With IGF-1 and TGF-β1
,”
J. Biomech.
,
43
(
13
), pp.
2501
2507
.10.1016/j.jbiomech.2010.05.022
7.
Maroudas
,
A.
, and
Bannon
,
C.
,
1981
, “
Measurement of Swelling Pressure in Cartilage and Comparison With the Osmotic Pressure of Constituent Proteoglycans
,”
Biorheology
,
18
(
3–6
), pp.
619
632
.http://europepmc.org/abstract/med/6799013
8.
Asanbaeva
,
A.
,
Masuda
,
K.
,
Thonar
,
E. J.-M. A.
,
Klisch
,
S. M.
, and
Sah
,
R. L.
,
2007
, “
Mechanisms of Cartilage Growth: Modulation of Balance Between Proteoglycan and Collagen In Vitro Using Chondroitinase ABC
,”
Arthritis Rheum.
,
56
(
1
), pp.
188
198
.10.1002/art.22298
9.
Maroudas
,
A.
,
1976
, “
Balance Between Swelling Pressure and Collagen Tension in Normal and Degenerate Cartilage
,”
Nature
,
260
(
5554
), pp.
808
809
.10.1038/260808a0
10.
Thomas
,
G. C.
,
Asanbaeva
,
A.
,
Vena
,
P.
,
Sah
,
R. L.
, and
Klisch
,
S. M.
,
2009
, “
A Nonlinear Constituent Based Viscoelastic Model for Articular Cartilage and Analysis of Tissue Remodeling Due to Altered Glycosaminoglycan-Collagen Interactions
,”
ASME J. Biomech. Eng.
,
131
(
10
), p.
101002
.10.1115/1.3192139
11.
Kuettner
,
K. E.
,
1992
, “
Biochemistry of Articular Cartilage in Health and Disease
,”
Clin. Biochem.
,
25
(
3
), pp.
155
163
.10.1016/0009-9120(92)90224-G
12.
Williamson
,
A. K.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
2001
, “
Compressive Properties and Function—Composition Relationships of Developing Bovine Articular Cartilage
,”
J. Orthop. Res.
,
19
(
6
), pp.
1113
1121
.10.1016/S0736-0266(01)00052-3
13.
Buckwalter
,
J. A.
, and
Mankin
,
H. J.
,
1998
, “
Articular Cartilage Repair and Transplantation
,”
Arthritis Rheum.
,
41
(
8
), pp.
1331
1342
.10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J
14.
Noyes
,
F. R.
, and
Stabler
,
C. L.
,
1989
, “
A System for Grading Articular Cartilage Lesions at Arthroscopy
,”
Am. J. Sports Med.
,
17
(
4
), pp.
505
513
.10.1177/036354658901700410
15.
Curl
,
W. W.
,
Krome
,
J.
,
Gordon
,
E. S.
,
Rushing
,
J.
,
Smith
,
B. P.
, and
Poehling
,
G. G.
,
1997
, “
Cartilage Injuries: A Review of 31,516 Knee Arthroscopies
,”
Arthroscopy: J. Arthroscopy Relat. Surg.
,
13
(
4
), pp.
456
460
.10.1016/S0749-8063(97)90124-9
16.
Botter
,
S. M.
,
van Osch
,
G. J. V. M.
,
Waarsing
,
J. H.
,
van der Linden
,
J. C.
,
Verhaar
,
J. A. N.
,
Pols
,
H. A. P.
,
van Leeuwen
,
J. P.
, and
Weinans
,
H.
,
2008
, “
Cartilage Damage Pattern in Relation to Subchondral Plate Thickness in a Collagenase-Induced Model of Osteoarthritis
,”
Osteoarthritis Cartilage
,
16
(
4
), pp.
506
514
.10.1016/j.joca.2007.08.005
17.
Temple-Wong
,
M. M.
,
Bae
,
W. C.
,
Chen
,
M. Q.
,
Bugbee
,
W. D.
,
Amiel
,
D.
,
Coutts
,
R. D.
,
Lotz
,
M.
, and
Sah
,
R. L.
,
2009
, “
Biomechanical, Structural, and Biochemical Indices of Degenerative and Osteoarthritic Deterioration of Adult Human Articular Cartilage of the Femoral Condyle
,”
Osteoarthritis Cartilage
,
17
(
11
), pp.
1469
1476
.10.1016/j.joca.2009.04.017
18.
Wong
,
B. L.
,
Kim
,
S. H. C.
,
Antonacci
,
J. M.
,
McIlwraith
,
C. W.
, and
Sah
,
R. L.
,
2010
, “
Cartilage Shear Dynamics During Tibio-Femoral Articulation: Effect of Acute Joint Injury and Tribosupplementation on Synovial Fluid Lubrication
,”
Osteoarthritis Cartilage
,
18
(
3
), pp.
464
471
.10.1016/j.joca.2009.11.008
19.
Novakofski
,
K. D.
,
Williams
,
R. M.
,
Fortier
,
L. A.
,
Mohammed
,
H. O.
,
Zipfel
,
W. R.
, and
Bonassar
,
L. J.
,
2014
, “
Identification of Cartilage Injury Using Quantitative Multiphoton Microscopy
,”
Osteoarthritis Cartilage
,
22
(
2
), pp.
355
362
.10.1016/j.joca.2013.10.008
20.
Maroudas
,
A.
, and
Venn
,
M.
,
1977
, “
Chemical Composition and Swelling of Normal and Osteoarthrotic Femoral Head Cartilage. II. Swelling
,”
Ann. Rheum. Dis.
,
36
(
5
), pp.
399
406
.10.1136/ard.36.5.399
21.
Saarakkala
,
S.
,
Julkunen
,
P.
,
Kiviranta
,
P.
,
Mäkitalo
,
J.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2010
, “
Depth-Wise Progression of Osteoarthritis in Human Articular Cartilage: Investigation of Composition, Structure and Biomechanics
,”
Osteoarthritis Cartilage
,
18
(
1
), pp.
73
81
.10.1016/j.joca.2009.08.003
22.
Cotofana
,
S.
,
Buck
,
R.
,
Wirth
,
W.
,
Roemer
,
F.
,
Duryea
,
J.
,
Nevitt
,
M.
,
Eckstein
,
F.
, and
Osteoarthritis Initiative Investigators Group
,
2012
, “
Cartilage Thickening in Early Radiographic Knee Osteoarthritis: A Within-Person, Between-Knee Comparison
,”
Arthritis Care Res.
,
64
(
11
), pp.
1681
1690
.10.1002/acr.21719
23.
Rodríguez
,
J. F.
,
Cacho
,
F.
,
Bea
,
J. A.
, and
Doblaré
,
M.
,
2006
, “
A Stochastic-Structurally Based Three Dimensional Finite-Strain Damage Model for Fibrous Soft Tissue
,”
J. Mech. Phys. Solids
,
54
(
4
), pp.
864
886
.10.1016/j.jmps.2005.10.005
24.
Calvo
,
B.
,
Peña
,
E.
,
Martinez
,
M. A.
, and
Doblaré
,
M.
,
2007
, “
An Uncoupled Directional Damage Model for Fibred Biological Soft Tissues. Formulation and Computational Aspects
,”
Int. J. Numer. Methods Eng.
,
69
(
10
), pp.
2036
2057
.10.1002/nme.1825
25.
Rodriguez
,
J. F.
,
Alastrue
,
V.
, and
Doblare
,
M.
,
2008
, “
Finite Element Implementation of a Stochastic Three Dimensional Finite-Strain Damage Model for Fibrous Soft Tissue
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
9
), pp.
946
958
.10.1016/j.cma.2007.09.017
26.
Gajewski
,
T.
,
Weisbecker
,
H.
,
Holzapfel
,
G. A.
, and
Lodygowski
,
T.
,
2013
, “
Implementation of a Hyperelastic Model for Arterial Layers Considering Damage and Distributed Collagen Fiber Orientations
.”http://www.ikb.poznan.pl/tomasz.gajewski/cad.put.poznan.pl/TG/cmm2013_gajewski_weisbecker_holzapfel_logydowski.pdf
27.
Weisbecker
,
H.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Layer-Specific Damage Experiments and Modeling of Human Thoracic and Abdominal Aortas With Non-Atherosclerotic Intimal Thickening
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
93
106
.10.1016/j.jmbbm.2012.03.012
28.
Famaey
,
N.
,
Vander Sloten
,
J.
, and
Kuhl
,
E.
,
2013
, “
A Three-Constituent Damage Model for Arterial Clamping in Computer-Assisted Surgery
,”
Biomech. Model. Mechanobiol.
,
12
(
1
), pp.
123
136
.10.1007/s10237-012-0386-7
29.
Hosseini
,
S. M.
,
Wilson
,
W.
,
Ito
,
K.
, and
van Donkelaar
,
C. C.
,
2014
, “
A Numerical Model to Study Mechanically Induced Initiation and Progression of Damage in Articular Cartilage
,”
Osteoarthritis Cartilage
,
22
(
1
), pp.
95
103
.10.1016/j.joca.2013.10.010
30.
Hollander
,
A. P.
,
Pidoux
,
I.
,
Reiner
,
A.
,
Rorabeck
,
C.
,
Bourne
,
R.
, and
Poole
,
A. R.
,
1995
, “
Damage to Type II Collagen in Aging and Osteoarthritis Starts at the Articular Surface, Originates Around Chondrocytes, and Extends Into the Cartilage With Progressive Degeneration
,”
J. Clin. Invest.
,
96
(
6
), pp.
2859
2869
.10.1172/JCI118357
31.
Rolauffs
,
B.
,
Muehleman
,
C.
,
Li
,
J.
,
Kurz
,
B.
,
Kuettner
,
K. E.
,
Frank
,
E.
, and
Grodzinsky
,
A. J.
,
2010
, “
Vulnerability of the Superficial Zone of Immature Articular Cartilage to Compressive Injury
,”
Arthritis Rheum.
,
62
(
10
), pp.
3016
3027
.10.1002/art.27610
32.
Stender
,
M. E.
,
Raub
,
C. B.
,
Yamauchi
,
K. A.
,
Shirazi
,
R.
,
Vena
,
P.
,
Sah
,
R. L.
,
Hazelwood
,
S. J.
, and
Klisch
,
S. M.
,
2012
, “
Integrating qPLM and Biomechanical Test Data With an Anisotropic Fiber Distribution Model and Predictions of TGF-β1 and IGF-1 Regulation of Articular Cartilage Fiber Modulus
,”
Biomech. Model. Mechanobiol.
,
12
(
6
), pp.
1073
1088
.10.1007/s10237-012-0463-y
33.
Schröder
,
J.
, and
Neff
,
P.
,
2003
, “
Invariant Formulation of Hyperelastic Transverse Isotropy Based on Polyconvex Free Energy Functions
,”
Int. J. Solids Struct.
,
40
(
2
), pp.
401
445
.10.1016/S0020-7683(02)00458-4
34.
Davison
,
L.
,
Stevens
,
A. L.
, and
Kipp
,
M. E.
,
1977
, “
Theory of Spall Damage Accumulation in Ductile Metals
,”
J. Mech. Phys. Solids
,
25
(
1
), pp.
11
28
.10.1016/0022-5096(77)90017-5
35.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.10.1016/0021-9290(83)90041-6
36.
Lei
,
F.
, and
Szeri
,
A. Z.
,
2006
, “
The Influence of Fibril Organization on the Mechanical Behaviour of Articular Cartilage
,”
Proc. R. Soc. A
,
462
(
2075
), pp.
3301
3322
.10.1098/rspa.2006.1732
37.
Ateshian
,
G. A.
,
2007
, “
Anisotropy of Fibrous Tissues in Relation to the Distribution of Tensed and Buckled Fibers
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
240
249
.10.1115/1.2486179
38.
Ateshian
,
G. A.
,
Rajan
,
V.
,
Chahine
,
N. O.
,
Canal
,
C. E.
, and
Hung
,
C. T.
,
2009
, “
Modeling the Many Observed Phenomena
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061003
.10.1115/1.3118773
39.
Shirazi
,
R.
,
Vena
,
P.
,
Sah
,
R. L.
, and
Klisch
,
S. M.
,
2011
, “
Modeling the Collagen Fibril Network of Biological Tissues as a Nonlinearly Elastic Material Using a Continuous Volume Fraction Distribution Function
,”
Math. Mech. Solids
,
16
(
7
), pp.
706
715
.10.1177/1081286510387866
40.
Williamson
,
A. K.
,
Chen
,
A. C.
,
Masuda
,
K.
,
Thonar
,
E. J.-M. A.
, and
Sah
,
R. L.
,
2003
, “
Tensile Mechanical Properties of Bovine Articular Cartilage: Variations With Growth and Relationships to Collagen Network Components
,”
J. Orthop. Res.
,
21
(
5
), pp.
872
880
.10.1016/S0736-0266(03)00030-5
41.
Buschmann
,
M.
, and
Grodzinsky
,
A.
,
1995
, “
A Molecular Model of Proteoglycan-Associated Forces in Cartilage Mechanics
,”
ASME J. Biomech. Eng.
,
117
(
2
), pp.
179
192
.10.1115/1.2796000
42.
McCormack
,
T.
, and
Mansour
,
J. M.
,
1997
, “
Reduction in Tensile Strength of Cartilage Precedes Surface Damage Under Repeated Compressive Loading in vitro
,”
J. Biomech.
,
31
(
1
), pp.
55
61
.10.1016/S0021-9290(97)00103-6
43.
Bae
,
W. C.
,
Temple
,
M. M.
,
Amiel
,
D.
,
Coutts
,
R. D.
,
Niederauer
,
G. G.
, and
Sah
,
R. L.
,
2003
, “
Indentation Testing of Human Cartilage: Sensitivity to Articular Surface Degeneration
,”
Arthritis Rheum.
,
48
(
12
), pp.
3382
3394
.10.1002/art.11347
44.
Temple
,
M. M.
,
Bae
,
W. C.
,
Chen
,
M. Q.
,
Lotz
,
M.
,
Amiel
,
D.
,
Coutts
,
R. D.
, and
Sah
,
R. L.
,
2007
, “
Age- and Site-Associated Biomechanical Weakening of Human Articular Cartilage of the Femoral Condyle
,”
Osteoarthritis Cartilage
,
15
(
9
), pp.
1042
1052
.10.1016/j.joca.2007.03.005
45.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
,
2005
, “
A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
,
38
(
6
), pp.
1195
1204
.10.1016/j.jbiomech.2004.07.003
46.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
Donkelaar
,
C. C.
,
2006
, “
Depth-Dependent Compressive Equilibrium Properties of Articular Cartilage Explained by Its Composition
,”
Biomech. Model. Mechanobiol.
,
6
(
1–2
), pp.
43
53
.10.1007/s10237-006-0044-z
47.
Davol
,
A.
,
Bingham
,
M. S.
,
Sah
,
R. L.
, and
Klisch
,
S. M.
,
2007
, “
A Nonlinear Finite Element Model of Cartilage Growth
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
295
307
.10.1007/s10237-007-0098-6
48.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
R.
, and
Huiskes
,
R.
,
2005
, “
The Role of Computational Models in the Search for the Mechanical Behavior and Damage Mechanisms of Articular Cartilage
,”
Med. Eng. Phys.
,
27
(
10
), pp.
810
826
.10.1016/j.medengphy.2005.03.004
49.
Buck
,
R. J.
,
Wyman
,
B. T.
,
Le Graverand
,
M. P.
,
Hudelmaier
,
M.
,
Wirth
,
W.
,
Eckstein
,
F.
, and
A9001140 Investigators
,
2009
, “
Does the Use of Ordered Values of Subregional Change in Cartilage Thickness Improve the Detection of Disease Progression in Longitudinal Studies of Osteoarthritis?
,”
Arthritis Rheum.
,
61
(
7
), pp.
917
924
.10.1002/art.24613
50.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.10.1115/1.2894880
51.
Loret
,
B.
, and
Simões
,
F. M.
,
2004
, “
Articular Cartilage With Intra-and Extrafibrillar Waters: A Chemo-Mechanical Model
,”
Mech. Mater.
,
36
(
5
), pp.
515
541
.10.1016/S0167-6636(03)00074-7
52.
Oungoulian
,
S.
,
2007
, “
Articular Cartilage Constitutive Modeling: A Polyconvex Strain Energy Function for Proteoglycan and Validation of a Growth Mixture Model With Collagen Remodeling: A Thesis
,” Master's dissertation, California Polytechnic State University, San Luis Obispo, CA.
53.
Sasazaki
,
Y.
,
Shore
,
R.
, and
Seedhom
,
B. B.
,
2006
, “
Deformation and Failure of Cartilage in the Tensile Mode
,”
J. Anat.
,
208
(
6
), pp.
681
694
.10.1111/j.1469-7580.2006.00569.x
54.
Asanbaeva
,
A.
,
Masuda
,
K.
,
Thonar
,
E. J.-M. A.
,
Klisch
,
S. M.
, and
Sah
,
R. L.
,
2007
, “
Regulation of Immature Cartilage Growth by IGF-I, TGF-β1, BMP-7, and PDGF-AB: Role of Metabolic Balance Between Fixed Charge and Collagen Network
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
263
276
.10.1007/s10237-007-0096-8
55.
Weightman
,
B.
,
1976
, “
Tensile Fatigue of Human Articular Cartilage
,”
J. Biomech.
,
9
(
4
), pp.
193
200
.10.1016/0021-9290(76)90004-X
56.
Weightman
,
B.
,
Chappell
,
D. J.
, and
Jenkins
,
E. A.
,
1978
, “
A Second Study of Tensile Fatigue Properties of Human Articular Cartilage
,”
Annals of the Rheumatic Diseases
,
37
(
1
), pp.
58
63
.
57.
Bellucci
,
G.
, and
Seedhom
,
B. B.
,
2002
, “
Tensile Fatigue Behaviour of Articular Cartilage
,”
Biorheology
,
39
(
1
), pp.
193
199
.http://content.iospress.com/articles/biorheology/bir147
58.
Buehler
,
M. J.
,
2007
, “
Molecular Nanomechanics of Nascent Bone: Fibrillar Toughening by Mineralization
,”
Nanotechnology
,
18
(
29
), p.
295102
.10.1088/0957-4484/18/29/295102
59.
Tang
,
Y.
,
Ballarini
,
R.
,
Buehler
,
M. J.
, and
Eppell
,
S. J.
,
2010
, “
Deformation Micromechanisms of Collagen Fibrils Under Uniaxial Tension
,”
J. R. Soc. Interface
,
7
(
46
), pp.
839
850
.10.1098/rsif.2009.0390
60.
Pins
,
G. D.
, and
Silver
,
F. H.
,
1995
, “
A Self-Assembled Collagen Scaffold Suitable for Use in Soft and Hard Tissue Replacement
,”
Mater. Sci. Eng.: C
,
3
(
2
), pp.
101
107
.10.1016/0928-4931(95)00109-3
61.
Jeffrey
,
J. E.
,
Thomson
,
L. A.
, and
Aspden
,
R. M.
,
1997
, “
Matrix Loss and Synthesis Following a Single Impact Load on Articular Cartilage In Vitro
,”
Biochim. Biophys. Acta
,
1334
(
2
), pp.
223
232
.10.1016/S0304-4165(96)00097-9
62.
Bush
,
P.
,
Hodkinson
,
P.
,
Hamilton
,
G.
, and
Hall
,
A.
,
2005
, “
Viability and Volume of Bovine Articular Chondrocytes? Changes Following a Single Impact and Effects of Medium Osmolarity
,”
Osteoarthritis Cartilage
,
13
(
1
), pp.
54
65
.10.1016/j.joca.2004.10.007
63.
Lin
,
P.
,
2004
, “
Increased Stromelysin-1 (MMP-3), Proteoglycan Degradation (3B3- and 7D4) and Collagen Damage in Cyclically Load-Injured Articular Cartilage
,”
Osteoarthritis Cartilage
,
12
(
6
), pp.
485
496
.10.1016/j.joca.2004.02.012
64.
Thibault
,
M.
,
Robin Poole
,
A.
, and
Buschmann
,
M. D.
,
2002
, “
Cyclic Compression of Cartilage/Bone Explants In Vitro Leads to Physical Weakening, Mechanical Breakdown of Collagen and Release of Matrix Fragments
,”
J. Orthop. Res.
,
20
(
6
), pp.
1265
1273
.10.1016/S0736-0266(02)00070-0
65.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Töyräs
,
J.
,
Lappalainen
,
R.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
,
2003
, “
Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular Cartilage
,”
J. Biomech.
,
36
(
9
), pp.
1373
1379
.10.1016/S0021-9290(03)00069-1
66.
Rieppo
,
J.
,
Töyräs
,
J.
,
Nieminen
,
M. T.
,
Kovanen
,
V.
,
Hyttinen
,
M. M.
,
Korhonen
,
R. K.
,
Jurvelin
,
J. S.
, and
Helminen
,
H. J.
,
2003
, “
Structure-Function Relationships in Enzymatically Modified Articular Cartilage
,”
Cells Tissues Organs
,
175
(
3
), pp.
121
132
.
67.
Appleyard
,
R.
,
2003
, “
Topographical Analysis of the Structural, Biochemical and Dynamic Biomechanical Properties of Cartilage in an Ovine Model of Osteoarthritis
,”
Osteoarthritis Cartilage
,
11
(
1
), pp.
65
77
.10.1053/joca.2002.0867
68.
Rizkalla
,
G.
,
Reiner
,
A.
,
Bogoch
,
E.
, and
Poole
,
A. R.
,
1992
, “
Studies of the Articular Cartilage Proteoglycan Aggrecan in Health and Osteoarthritis. Evidence for Molecular Heterogeneity and Extensive Molecular Changes in Disease
,”
J. Clin. Invest.
,
90
(
6
), pp.
2268
2277
.10.1172/JCI116113
69.
Peerlings
,
R. H. J.
,
Geers
,
M. G. D.
,
De Borst
,
R.
, and
Brekelmans
,
W. A. M.
,
2001
, “
A Critical Comparison of Nonlocal and Gradient-Enhanced Softening Continua
,”
Int. J. Solids Struct.
,
38
(
44
), pp.
7723
7746
.10.1016/S0020-7683(01)00087-7
70.
Buehler
,
M. J.
, and
Ackbarow
,
T.
,
2008
, “
Nanomechanical Strength Mechanisms of Hierarchical Biological Materials and Tissues
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
6
), pp.
595
607
.10.1080/10255840802078030
You do not currently have access to this content.