Methods to quantify ventricle material properties noninvasively using in vivo data are of great important in clinical applications. An ultrasound echo-based computational modeling approach was proposed to quantify left ventricle (LV) material properties, curvature, and stress/strain conditions and find differences between normal LV and LV with infarct. Echo image data were acquired from five patients with myocardial infarction (I-Group) and five healthy volunteers as control (H-Group). Finite element models were constructed to obtain ventricle stress and strain conditions. Material stiffening and softening were used to model ventricle active contraction and relaxation. Systolic and diastolic material parameter values were obtained by adjusting the models to match echo volume data. Young's modulus (YM) value was obtained for each material stress–strain curve for easy comparison. LV wall thickness, circumferential and longitudinal curvatures (C- and L-curvature), material parameter values, and stress/strain values were recorded for analysis. Using the mean value of H-Group as the base value, at end-diastole, I-Group mean YM value for the fiber direction stress–strain curve was 54% stiffer than that of H-Group (136.24 kPa versus 88.68 kPa). At end-systole, the mean YM values from the two groups were similar (175.84 kPa versus 200.2 kPa). More interestingly, H-Group end-systole mean YM was 126% higher that its end-diastole value, while I-Group end-systole mean YM was only 29% higher that its end-diastole value. This indicated that H-Group had much greater systole–diastole material stiffness variations. At beginning-of-ejection (BE), LV ejection fraction (LVEF) showed positive correlation with C-curvature, stress, and strain, and negative correlation with LV volume, respectively. At beginning-of-filling (BF), LVEF showed positive correlation with C-curvature and strain, but negative correlation with stress and LV volume, respectively. Using averaged values of two groups at BE, I-Group stress, strain, and wall thickness were 32%, 29%, and 18% lower (thinner), respectively, compared to those of H-Group. L-curvature from I-Group was 61% higher than that from H-Group. Difference in C-curvature between the two groups was not statistically significant. Our results indicated that our modeling approach has the potential to determine in vivo ventricle material properties, which in turn could lead to methods to infer presence of infarct from LV contractibility and material stiffness variations. Quantitative differences in LV volume, curvatures, stress, strain, and wall thickness between the two groups were provided.

References

References
1.
Desmond-Hellmann
,
S.
,
Sawyers
,
C. L.
,
Cox
,
D. R.
,
Fraser-Liggett
,
C.
,
Galli
,
S. J.
,
Goldstein
,
D. B.
,
Hunter
,
D.
,
Kohane
,
I. S.
,
Lo
,
B.
,
Misteli
,
T.
,
Morrison
,
S. J.
,
Nichols
,
D. G.
,
Olson
,
M. V.
,
Royal
,
C. D.
, and
Yamamoto
,
K. R.
,
2011
, “
Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease
,” Committee on a Framework for Development a New Taxonomy of Disease, National Research Council, The National Academies Press.http://www.nap.edu/catalog.php?record_id=13284
2.
McCulloch
,
A.
,
Waldman
,
L.
,
Rogers
,
J.
, and
Guccione
,
J.
,
1992
, “
Large-Scale Finite Element Analysis of the Beating Heart
,”
Crit. Rev. Biomed. Eng.
,
20
(
5–6
), pp.
427
449
.
3.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
,
1991
, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME J. Biomech. Eng.
,
113
(
1
), pp.
42
55
.10.1115/1.2894084
4.
Guccione
,
J. M.
,
Waldman
,
L. K.
, and
McCulloch
,
A. D.
,
1993
, “
Mechanics of Active Contraction in Cardiac Muscle: Part II—Cylindrical Models of the Systolic Left Ventricle
,”
ASME J. Biomech. Eng.
,
115
(
1
), pp.
82
90
.10.1115/1.2895474
5.
Krishnamurthy
,
A.
,
Villongco
,
C. T.
,
Chuang
,
J.
,
Frank
,
L. R.
,
Nigam
,
V.
,
Belezzuoli
,
E.
,
Stark
,
P.
,
Krummen
,
D. E.
,
Narayan
,
S.
,
Omens
,
J. H.
,
McCulloch
,
A. D.
, and
Kerckhoffs
,
R. C.
,
2013
, “
Patient-Specific Models of Cardiac Biomechanics
,”
J. Comput. Phys.
,
244
, pp.
4
21
.10.1016/j.jcp.2012.09.015
6.
Holmes
,
J. W.
, and
Costa
,
K. D.
,
2006
, “
Imaging Cardiac Mechanics: What Information Do We Need to Extract From Cardiac Images?
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
1
, pp.
1545
1547
.10.1109/IEMBS.2006.259642
7.
Moyer
,
C. B.
,
Norton
,
P. T.
,
Ferguson
,
J. D.
, and
Holmes
,
J. W.
, “
Changes in Global and Regional Mechanics Due to Atrial Fibrillation: Insights From a Coupled Finite-Element and Circulation Model
,”
Ann. Biomed. Eng.
(in press).10.1007/s10439-015-1256-0
8.
Fomovsky
,
G. M.
,
Macadangdang
,
J. R.
,
Ailawadi
,
G.
, and
Holmes
,
J. W.
,
2011
, “
Model-Based Design of Mechanical Therapies for Myocardial Infarction
,”
J. Cardiovasc. Trans. Res.
,
4
(
1
), pp.
82
91
.10.1007/s12265-010-9241-3
9.
Emond
,
M.
,
Mock
,
M. B.
,
Davis
,
K. B.
,
Fisher
,
L. D.
,
Holmes
,
D. R.
, Jr.
,
Chaitman
,
B. R.
,
Kaiser
,
G. C.
,
Alderman
,
E.
, and
Killip
,
T.
, III
,
1994
, “
Long-Term Survival of Medically Treated Patients in the Coronary Artery Surgery Study (CASS) Registry
,”
Circulation
,
90
(
6
), pp.
2645
2657
.10.1161/01.CIR.90.6.2645
10.
Møller
,
J. E.
,
Hillis
,
G. S.
,
Oh
,
J. K.
,
Reeder
,
G. S.
,
Gersh
,
B. J.
, and
Pellikka
,
P. A.
,
2006
, “
Wall Motion Score Index and Ejection Fraction for Risk Stratification After Acute Myocardial Infarction
,”
Am. Heart J.
,
151
(
2
), pp.
419
425
.10.1016/j.ahj.2005.03.042
11.
Quinones
,
M. A.
,
Greenberg
,
B. H.
,
Kopelen
,
H. A.
,
Koilpillai
,
C.
,
Limacher
,
M. C.
,
Shindler
,
D. M.
,
Shelton
,
B. J.
, and
Weiner
,
D. H.
,
2000
, “
Echocardiographic Predictors of Clinical Outcome in Patients With Left Ventricular Dysfunction Enrolled in the SOLVD Registry and Trials: Significance of Left Ventricular Hypertrophy
,”
J. Am. Coll. Cardiol.
,
35
(
5
), pp.
1237
1244
.10.1016/S0735-1097(00)00511-8
12.
Sabia
,
P.
,
Afrookteh
,
A.
,
Touchstone
,
D. A.
,
Keller
,
M. W.
,
Esquivel
,
L.
, and
Kaul
,
S.
,
1991
, “
Value of Regional Wall Motion Abnormality in the Emergency Room Diagnosis of Acute Myocardial Infarction: A Prospective Study Using Two Dimensional Echocardiography
,”
Circulation
,
84
(
3 Suppl.
), pp.
I85
I92
.
13.
Thune
,
J. J.
,
Kober
,
L.
,
Pfeffer
,
M. A.
,
Skali
,
H.
,
Anavekar
,
N. S.
,
Bourgoun
,
M.
,
Ghali
,
J. K.
,
Arnold
,
J. M.
,
Velazquez
,
E. J.
, and
Solomon
,
S. D.
,
2006
, “
Comparison of Regional Versus Global Assessment of Left Ventricular Function in Patients With Left Ventricular Dysfunction, Heart Failure, or Both After Myocardial Infarction: The Valsartan in Acute Myocardial Infarction Echocardiographic Study
,”
J. Am. Soc. Echocardiogr.
,
19
(
12
), pp.
1462
1465
.10.1016/j.echo.2006.05.028
14.
Gopal
,
A. S.
,
Shen
,
Z.
,
Sapin
,
P. M.
,
Keller
,
A. M.
,
Schnellbaecher
,
M. J.
,
Leibowitz
,
D. W.
,
Akinboboye
,
O. O.
,
Rodney
,
R. A.
,
Blood
,
D. K.
, and
King
,
D. L.
,
1995
, “
Assessment of Cardiac Function by Three-Dimensional Echocardiography Compared With Conventional Noninvasive Methods
,”
Circulation
,
92
(
4
), pp.
842
853
.10.1161/01.CIR.92.4.842
15.
Mondelli
,
J. A.
,
Di Luzio
,
S.
,
Nagaraj
,
A.
,
Kane
,
B. J.
,
Smulevitz
,
B.
,
Nagaraj
,
A. V.
,
Greene
,
R.
,
McPherson
,
D. D.
, and
Rigolin
,
V. H.
,
2001
, “
The Validation of Volumetric Real-Time 3-Dimensional Echocardiography for the Determination of Left Ventricular Function
,”
J. Am. Soc. Echocardiogr.
,
14
(
10
), pp.
994
1000
.10.1067/mje.2001.115770
16.
Edvardsen
,
T.
,
Gerber
,
B. L.
,
Garot
,
J.
,
Bluemke
,
D. A.
,
Lima
,
J. A.
, and
Smiseth
,
O. A.
,
2002
, “
Quantitative Assessment of Intrinsic Regional Myocardial Deformation by Doppler Strain Rate Echocardiography in Humans: Validation Against Three Dimensional Tagged Magnetic Resonance Imaging
,”
Circulation
,
106
(
1
), pp.
50
56
.10.1161/01.CIR.0000019907.77526.75
17.
Urheim
,
S.
,
Edvardsen
,
T.
,
Torp
,
H.
,
Angelsen
,
B.
, and
Smiseth
,
O. A.
,
2000
, “
Myocardial Strain by Doppler Echocardiography: Validation of a New Method to Quantify Regional Myocardial Function
,”
Circulation
,
102
(
1
), pp.
1158
1164
.10.1161/01.CIR.102.10.1158
18.
Sutherland
,
G. R.
,
Di Salvo
,
G.
,
Claus
,
P.
,
D'hooge
,
J.
, and
Bijnens
,
B.
,
2004
, “
Strain and Strain Rate Imaging: A New Clinical Approach to Quantifying Regional Myocardial Function
,”
J. Am. Soc. Echocardiogr.
,
17
(
7
), pp.
788
802
.10.1016/j.echo.2004.03.027
19.
Amundsen
,
B. H.
,
Helle-Valle
,
T.
,
Edvardsen
,
T.
,
Torp
,
H.
,
Crosby
,
J.
,
Lyseggen
,
E.
,
Støylen
,
A.
,
Ihlen
,
H.
,
Lima
,
J. A.
,
Smiseth
,
O. A.
, and
Slørdahl
,
S. A.
,
2006
, “
Noninvasive Myocardial Strain Measurement by Speckle Tracking Echocardiography: Validation Against Sonomicrometry and Tagged Magnetic Resonance Imaging
,”
J. Am. Coll. Cardiol.
,
47
(
4
), pp.
789
793
.10.1016/j.jacc.2005.10.040
20.
Peskin
,
C. S.
,
1975
,
Mathematical Aspects of Heart Physiology
(Lecture Notes of Courant Institute of Mathematical Sciences),
New York University
,
New York
.
21.
Costa
,
K. D.
,
Takayama
,
Y.
,
McCulloch
,
A. D.
, and
Covell
,
J. W.
,
1999
, “
Laminar Fiber Architecture and Three-Dimensional Systolic Mechanics in Canine Ventricular Myocardium
,”
Am. J. Physiol.
,
276
(
2 Pt. 2
), pp.
H595
H607
.
22.
Nash
,
M. P.
, and
Hunter
,
P. J.
,
2000
, “
Computational Mechanics of the Heart, From Tissue Structure to Ventricular Function
,”
J. Elasticity
,
61
(
1–3
), pp.
113
141
.10.1023/A:1011084330767
23.
Rogers
,
J. M.
, and
McCulloch
,
A. D.
,
1994
, “
Nonuniform Muscle Fiber Orientation Causes Spiral Wave Drift in a Finite Element Model of Cardiac Action Potential Propagation
,”
J. Cardiovasc. Electrophysiol.
,
5
(
6
), pp.
496
509
.10.1111/j.1540-8167.1994.tb01290.x
24.
Sacks
,
M. S.
, and
Chuong
,
C. J.
,
1993
, “
Biaxial Mechanical Properties of Passive Right Ventricular Free Wall Myocardium
,”
ASME J. Biomech. Eng.
,
115
(
2
), pp.
202
205
.10.1115/1.2894122
25.
Takayama
,
Y.
,
Costa
,
K. D.
, and
Covell
,
J. W.
,
2002
, “
Contribution of Laminar Myofiber Architecture to Load-Dependent Changes in Mechanics of LV Myocardium
,”
Am. J. Physiol. Heart Circ. Physiol.
,
282
(
4
), pp.
H1510
H1520
.10.1152/ajpheart.00261.2001
26.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C.
,
1999
, “
Biaxial Mechanical Behavior of Excised Ventricular Epicardium
,”
Am. J. Physiol.
,
259
(
1 Pt. 2
), pp.
H101
H108
.
27.
Mojsejenko
,
D.
,
McGarvey
,
J. R.
,
Dorsey
,
S. M.
,
Gorman
,
J. H.
, III
,
Burdick
,
J. A.
,
Pilla
,
J. J.
,
Gorman
,
R. C.
, and
Wenk
,
J. F.
,
2015
, “
Estimating Passive Mechanical Properties in a Myocardial Infarction Using MRI and Finite Element Simulations
,”
Biomech. Model. Mechanobiol.
,
14
(
3
), pp.
633
647
.10.1007/s10237-014-0627-z
28.
Hassaballah
,
A. I.
,
Hassan
,
M. A.
,
Mardi
,
A. N.
, and
Hamdi
,
M.
,
2013
, “
An Inverse Finite Element Method for Determining the Tissue Compressibility of Human Left Ventricular Wall During the Cardiac Cycle
,”
PLoS One
,
8
(
12
), p.
e82703
.10.1371/journal.pone.0082703
29.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics
,
Springer-Verlag
,
New York
.10.1007/978-0-387-21576-1
30.
Axel
,
L.
,
2002
, “
Biomechanical Dynamics of the Heart With MRI
,”
Annu. Rev. Biomed. Eng.
,
4
, pp.
321
347
.10.1146/annurev.bioeng.4.020702.153434
31.
Saber
,
N. R.
,
Gosman
,
A. D.
,
Wood
,
N. B.
,
Kilner
,
P. J.
,
Charrier
,
C. L.
, and
Firman
,
D. N.
,
2001
, “
Computational Flow Modeling of the Left Ventricle Based on In Vivo MRI Data: Initial Experience
,”
Ann. Biomech. Eng.
,
29
(
4
), pp.
275
283
.10.1114/1.1359452
32.
Tang
,
D.
,
Yang
,
C.
,
Geva
,
T.
, and
del Nido
,
P. J.
,
2008
, “
Patient-Specific MRI-Based 3D FSI RV/LV/Patch Models for Pulmonary Valve Replacement Surgery and Patch Optimization
,”
ASME J. Biomech. Eng.
,
130
(
4
), p.
041010
.10.1115/1.2913339
33.
Tang
,
D.
,
Yang
,
C.
,
Geva
,
T.
, and
del Nido
,
P. J.
,
2010
, “
Image-Based Patient-Specific Ventricle Models With Fluid–Structure Interaction for Cardiac Function Assessment and Surgical Design Optimization
,”
Prog. Pediatr. Cardiol.
,
30
(
1–2
), pp.
51
62
.10.1016/j.ppedcard.2010.09.007
34.
Tang
,
D.
,
Yang
,
C.
,
Geva
,
T.
,
Gaudette
,
G.
, and
del Nido
,
P. J.
,
2010
, “
Effect of Patch Mechanical Properties on Right Ventricle Function Using MRI-Based Two-Layer Anisotropic Models of Human Right and Left Ventricles
,”
Comput. Model. Eng. Sci.
,
56
(
2
), pp.
113
130
.10.3970/cmes.2010.056.113
35.
Tang
,
D.
,
Yang
,
C.
,
Geva
,
T.
,
Gaudette
,
G.
, and
del Nido
,
P. J.
,
2011
, “
Multi-Physics MRI-Based Two-Layer Fluid–Structure Interaction Anisotropic Models of Human Right and Left Ventricles With Different Patch Materials: Cardiac Function Assessment and Mechanical Stress Analysis
,”
Comput. Struct.
,
89
(
11–12
), pp.
1059
1068
.10.1016/j.compstruc.2010.12.012
36.
Fan
,
R.
,
Tang
,
D.
,
Yao
,
J.
,
Yang
,
C.
, and
Xu
,
D.
,
2014
, “
3D Echo-Based Patient-Specific Computational Left Ventricle Models to Quantify Material Properties and Stress/Strain Differences Between Ventricles With and Without Infarct
,”
Comput. Model. Eng. Sci.
,
99
(
6
), pp.
491
508
.10.3970/cmes.2014.099.491
37.
Sanchez-Quintana
,
D.
,
Anderson
,
R.
, and
Ho
,
S. Y.
,
1996
, “
Ventricular Myoarchitecture in Tetralogy of Fallot
,”
Heart
,
76
(
3
), pp.
280
286
.10.1136/hrt.76.3.280
You do not currently have access to this content.