In tissue engineering, the cell and scaffold approach has shown promise as a treatment to regenerate diseased and/or damaged tissue. In this treatment, an artificial construct (scaffold) is seeded with cells, which organize and proliferate into new tissue. The scaffold itself biodegrades with time, leaving behind only newly formed tissue. The degradation qualities of the scaffold are critical during the treatment period, since the change in the mechanical properties of the scaffold with time can influence cell behavior. To observe in time the scaffold's mechanical properties, a straightforward method is to deform the scaffold and then characterize scaffold deflection accordingly. However, experimentally observing the scaffold deflection is challenging. This paper presents a novel study on characterization of mechanical properties of scaffolds by phase contrast imaging and finite element modeling, which specifically includes scaffold fabrication, scaffold imaging, image analysis, and finite elements (FEs) modeling of the scaffold mechanical properties. The innovation of the work rests on the use of in-line phase contrast X-ray imaging at 20 KeV to characterize tissue scaffold deformation caused by ultrasound radiation forces and the use of the Fourier transform to identify movement. Once deformation has been determined experimentally, it is then compared with the predictions given by the forward solution of a finite element model. A consideration of the number of separate loading conditions necessary to uniquely identify the material properties of transversely isotropic and fully orthotropic scaffolds is also presented, along with the use of an FE as a form of regularization.

References

References
1.
Gray
,
N. A.
, and
Selzman
,
C. H.
,
2005
, “
Current Status of the Total Artificial Heart
,”
Am. Heart J.
,
152
(
1
), pp.
4
10
.10.1016/j.ahj.2005.10.024
2.
Zwischenberger
,
J. B.
,
Anderson
,
C. M.
,
Cook
,
K. E.
,
Lick
,
S. D.
,
Mockros
,
L. F.
, and
Bartlett
,
R. H.
,
2001
, “
Development of an Implantable Artificial Lung: Challenges and Progress
,”
ASAIO J.
,
47
(4), pp.
316
320
.10.1097/00002480-200107000-00003
3.
Bodell
,
B. R.
,
Head
,
J. M.
,
Head
,
L. R.
, and
Formolo
,
A. J.
,
1965
, “
An Implantable Artificial Lung; Initial Experiments in Animals
,”
J. Am. Med. Assoc.
,
191
(4), pp.
125
127
.10.1001/jama.1965.03080040043012
4.
Down
,
J. D.
, and
White-Scharf
,
M. E.
,
2003
, “
Reprogramming Immune Responses: Enabling Cellular Therapies and Regenerative Medicine
,”
Stem Cells
,
21
(
1
), pp.
21
32
.10.1634/stemcells.21-1-21
5.
Kobayashi
,
T.
,
Yamaguchi
,
T.
,
Hamanaka
,
S.
,
Kato-Itoh
,
M.
,
Yamazaki
,
Y.
,
Ibata
,
M.
,
Sato
,
H.
,
Lee
,
Y. S.
,
Usui
,
J.
,
Knisely
,
A. S.
,
Hirabayashi
,
M.
, and
Nakauchi
,
H.
,
2010
, “
Generation of Rat Pancreas in Mouse by Interspecific Blastocyst Injection of Pluripotent Stem Cells
,”
Cell
,
142
(
5
), pp.
787
799
.10.1016/j.cell.2010.07.039
6.
Atala
,
A.
,
Kasper
,
F. K.
, and
Mikos
,
A. G.
,
2012
, “
Engineering Complex Tissues
,”
Tissue Eng. Rev. B
,
4
(
160
), pp.
1
10
.10.1126/scitranslmed.3004890
7.
Dado
,
D.
, and
Levenberg
,
S.
,
2009
, “
Cell–Scaffold Mechanical Interplay Within Engineered Tissue
,”
Semin. Cell Develop. Biol.
,
20
(
6
), pp.
656
664
.10.1016/j.semcdb.2009.02.001
8.
Hollister
,
S. J.
,
Maddox
,
R. D.
, and
Taboas
,
J. M.
,
2002
, “
Optimal Design and Fabrication of Scaffolds to Mimic Tissue Properties and Satisfy Biological Constraints
,”
Biomaterials
,
23
(
20
), pp.
4095
4103
.10.1016/S0142-9612(02)00148-5
9.
Artzi
,
N.
,
Oliva
,
N.
,
Puron
,
C.
,
Shitreet
,
S.
,
Artzi
,
S.
,
Bon Ramos
,
A.
,
Groothuis
,
A.
,
Sahagian
,
G.
, and
Edelman
,
E. R.
,
2011
, “
In Vivo and In Vitro Tracking of Erosion in Biodegradable Materials Using Non-Invasive Fluorescence Imaging
,”
Nat. Mater.
,
10
(
9
), pp.
704
709
.10.1038/nmat3095
10.
Radicke
,
M.
,
Mende
,
J.
,
Kofahl
,
A. L.
,
Wild
,
J.
,
Ulucay
,
D.
,
Habenstein
,
B.
,
Deimling
,
M.
,
Trautner
,
P.
,
Weber
,
B.
, and
Maier
,
K.
,
2011
, “
Acoustic Radiation Contrast in MR Images for Breast Cancer Diagnostics-Initial Phantom Study
,”
Ultrasound Med. Biol.
,
37
(
2
), pp.
253
261
.10.1016/j.ultrasmedbio.2010.11.005
11.
Nyborg
,
W. L.
,
1965
, “
Acoustic Streaming
,”
Physical Acoustics
,
W. P.
Mason
, ed.,
Academic
,
New York
.
12.
Torr
,
G. R.
,
1984
, “
The Acoustic Radiation Force
,”
Am. J. Phys.
,
52
(
5
), pp.
402
408
.10.1119/1.13625
13.
Tierney
,
A. P.
,
Dumont
,
D. M.
,
Callanan
,
A.
,
Trahey
,
G. E.
, and
Mcgloughlin
,
T. M.
,
2010
, “
Acoustic Radiation Force Impulse Imaging on Ex Vivo Abdominal Aortic Aneurysm Model
,”
Ultrasound Med. Biol.
,
36
(
5
), pp.
821
832
.10.1016/j.ultrasmedbio.2010.02.018
14.
Sarvazyan
,
A. P.
,
Rudenko
,
O. V.
, and
Nyborg
,
W. L.
,
2010
, “
Biomedical Applications of Radiation Force of Ultrasound: Historical Roots and Physical Basis
,”
Ultrasound Med. Biol.
,
36
(
9
), pp.
1379
1394
.10.1016/j.ultrasmedbio.2010.05.015
15.
Kaye
,
G. W.
, and
Laby
,
T. H.
,
1995
,
Tables of Physical and Chemical Constants
, 16th ed.,
Longman Science Technical
,
London
.
16.
Appel
,
A.
,
Anastasio
,
M. A.
, and
Brey
,
E. M.
,
2011
, “
Potential for Imaging Engineered Tissues With X-Ray Phase Contrast
,”
Tissue Eng. Part B: Rev.
,
17
(
5
), pp.
321
330
.10.1089/ten.teb.2011.0230
17.
Bravin
,
A.
,
Coan
,
P.
, and
Suortti
,
P.
,
2013
, “
X-Ray Phase-Contrast Imaging: From Pre-Clinical Applications Towards Clinics
,”
Phys. Med. Biol.
,
58
(
1
), pp.
R1
R35
.10.1088/0031-9155/58/1/R1
18.
Sztrókay
,
A.
,
Diemoz
,
P. C.
,
Schlossbauer
,
T.
,
Brun
,
E.
,
Bamberg
,
F.
,
Mayr
,
D.
,
Reiser
,
M. F.
,
Bravin
,
A.
, and
Coan
,
P.
,
2012
, “
High-Resolution Breast Tomography at High Energy: A Feasibility Study of Phase Contrast Imaging on a Whole Breast
,”
Phys. Med. Biol.
,
57
(10), pp.
2931
2942
.10.1088/0031-9155/57/10/2931
19.
Quan-Jie
,
J.
,
Yu
,
C.
,
Gang
,
L.
, and
Xiao-Ming
,
J.
,
2012
, “
Optimization of the In-Line X-Ray Phase-Contrast Imaging Setup Considering Edge-Contrast Enhancement and Spatial Resolution
,”
Chin. Phys. C
,
36
(
3
), pp.
267
274
.
20.
Zhong
,
Z.
,
Thomlinson
,
W.
,
Chapman
,
D.
, and
Sayers
,
D.
,
2000
, “
Implementation of Diffraction-Enhanced Imaging Experiments: At the NSLS and APS
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
450
(
2
), pp.
556
567
.10.1016/S0168-9002(00)00308-9
21.
Zhu
,
N.
,
Chapman
,
D.
,
Cooper
,
D.
,
Schreyer
,
D. J.
, and
Chen
,
X.
,
2011
, “
X-Ray Diffraction Enhanced Imaging as a Novel Method to Visualize Low-Density Scaffolds in Soft Tissue Engineering
,”
Tissue Eng., Part C
,
17
(
11
), pp.
1071
1080
.10.1089/ten.tec.2011.0102
22.
Hamilton
,
T. J.
,
Bailat
,
C. J.
,
Petruck
,
C. R.
, and
Diebold
,
G. J.
,
2004
, “
Acoustically Modulated X-Ray Phase Contrast Imaging
,”
Phys. Med. Biol.
,
49
(
21
), pp.
4985
4996
.10.1088/0031-9155/49/21/010
23.
Yamahata
,
C.
,
Sarajlic
,
E.
,
Stranczl
,
M.
,
Krijnen
,
G.
, and
Gijs
,
M.
,
2011
, “
Subpixel Translation of MEMs Measured by Discrete Fourier Transform Analysis of CCD Images
,”
16th International Conference on Solid-State Sensors, Actuators and Microsystems Conference
,
TRANSDUCERS '11
, June 5–9, pp.
1697
1700
.10.1109/TRANSDUCERS.2011.5969574
24.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1993
,
Micromechanics: Overall Properties of Heterogeneous Solids
,
2nd ed.
,
North Holland Publishing
,
Amsterdam
.
25.
Bawolin
,
N. K.
,
Li
,
M. G.
,
Chen
,
X. B.
, and
Zhang
,
W. J.
,
2010
, “
Modeling Material-Degradation-Induced Elastic Property of Tissue Engineering Scaffolds
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111001
.10.1115/1.4002551
You do not currently have access to this content.