Knowledge of the anisotropic elastic properties of osteon and osteonal lamellae provides a better understanding of various pathophysiological conditions, such as aging, osteoporosis, osteoarthritis, and other degenerative diseases. For this reason, it is important to investigate and understand the elasticity of cortical bone. We created a bidirectional micromechanical model based on inverse homogenization for predicting the elastic properties of osteon and osteonal lamellae of cortical bone. The shape, the dimensions, and the curvature of osteon and osteonal lamellae are described by appropriately chosen curvilinear coordinate systems, so that the model operates close to the real morphology of these bone components. The model was used to calculate nine orthotropic elastic constants of osteonal lamellae. The input values have the elastic properties of a single osteon. We also expressed the dependence of the elastic properties of the lamellae on the angle of orientation. To validate the model, we performed nanoindentation tests on several osteonal lamellae. We compared the experimental results with the calculated results, and there was good agreement between them. The inverted model was used to calculate the elastic properties of a single osteon, where the input values are the elastic constants of osteonal lamellae. These calculations reveal that the model can be used in both directions of homogenization, i.e., direct homogenization and also inverse homogenization. The model described here can provide either the unknown elastic properties of a single lamella from the known elastic properties at the level of a single osteon, or the unknown elastic properties of a single osteon from the known elastic properties at the level of a single lamella.

References

References
1.
Cowin
,
S. C.
, and
Doty
,
S. B.
,
2007
,
Tissue Mechanics
,
Springer Science+Business Media, LLC
,
New York
.10.1007/978-0-387-49985-7
2.
Laszlo
,
M.
,
1991
,
Organization of the Extracellular Matrix: A Polarization Microscopic Approach
,
CRC Press
,
Boca Raton, FL
.
3.
Fratzl
,
P.
, and
Weinkamer
,
R.
,
2007
, “
Nature's Hierarchical Materials
,”
Prog. Mater. Sci.
,
52
(
8
), pp.
1263
1334
.10.1016/j.pmatsci.2007.06.001
4.
Fratzl
,
P.
,
Gupta
,
H. S.
,
Paschalis
,
E. P.
, and
Roschger
,
P.
,
2004
, “
Structure and Mechanical Quality of the Collagen-Mineral Nano-Composite in Bone
,”
J. Mater. Chem.
,
14
(
14
), pp.
2115
2123
.10.1039/b402005g
5.
Wagermaier
,
W.
,
Gupta
,
H. S.
,
Gourrier
,
A.
,
Burghammer
,
M.
,
Roschger
,
P.
, and
Fratzl
,
P.
,
2006
, “
Spiral Twisting of Fiber Orientation Inside Bone Lamellae
,”
Biointerphases
,
1
(
1
), pp.
1
5
.10.1116/1.2178386
6.
Wagermaier
,
W.
,
Gupta
,
H. S.
,
Gourrier
,
A.
,
Paris
,
O.
,
Roschger
,
P.
,
Burghammer
,
M.
,
Riekel
,
C.
, and
Fratzl
,
P.
,
2007
, “
Scanning Texture Analysis of Lamellar Bone Using Microbeam Synchrotron X-ray Radiation
,”
J. Appl. Crystallogr.
,
40
, pp.
115
120
.10.1107/S0021889806044888
7.
Techawiboonwong
,
A.
,
Song
,
H. K.
,
Leonard
,
M. B.
, and
Wehrli
,
F. W.
,
2008
, “
Cortical Bone Water: In Vivo Quantification With Ultrashort Echo-Time MR Imaging
,”
Radiology
,
248
(
3
), pp.
824
833
.10.1148/radiol.2482071995
8.
Weiner
,
S.
, and
Wagner
,
H. D.
,
1998
, “
The Material Bone: Structure-Mechanical Function Relations
,”
Annu. Rev. Mater. Sci.
,
28
, pp.
271
298
.10.1146/annurev.matsci.28.1.271
9.
Looker
,
A. C.
,
Borrud
,
L. G.
,
Hughes
,
J. P.
,
Fan
,
B.
,
Shepherd
,
J. A.
, and
Sherman
,
M.
,
2013
, “
Total Body Bone Area, Bone Mineral Content, and Bone Mineral Density for Individuals Aged 8 Years and Over: United States, 1999–2006
,”
Vital Health Stat. 11
,
2013
(
253
), pp.
1
86
.
10.
Jasiuk
,
I.
, and
Ostoja-Starzewski
,
M.
,
2004
, “
Modeling of Bone at a Single Lamella Level
,”
Biomech. Model. Mechanobiol.
,
3
(
2
), pp.
67
74
.10.1007/s10237-004-0048-5
11.
Yoon
,
Y. J.
, and
Cowin
,
S. C.
,
2008
, “
The Estimated Elastic Constants for a Single Bone Osteonal Lamella
,”
Biomech. Model. Mechanobiol.
,
7
(
1
), pp.
1
11
.10.1007/s10237-006-0072-8
12.
Dong
,
X. N.
, and
Guo
,
X. E.
,
2006
, “
Prediction of Cortical Bone Elastic Constants by a Two-Level Micromechanical Model Using a Generalized Self-Consistent Method
,”
ASME J. Biomech. Eng.
,
128
(
3
), pp.
309
316
.10.1115/1.2187039
13.
Fritsch
,
A.
, and
Hellmich
,
C.
,
2007
, “
Universal Microstructural Patterns in Cortical and Trabecular, Extracellular and Extravascular Bone Materials: Micromechanics-Based Prediction of Anisotropic Elasticity
,”
J. Theor. Biol.
,
244
(
4
), pp.
597
620
.10.1016/j.jtbi.2006.09.013
14.
Nikolov
,
S.
, and
Raabe
,
D.
,
2008
, “
Hierarchical Modeling of the Elastic Properties of Bone at Submicron Scales: The Role of Extrafibrillar Mineralization
,”
Biophys. J.
,
94
(
11
), pp.
4220
4232
.10.1529/biophysj.107.125567
15.
Predoi-Racila
,
M.
, and
Crolet
,
J. M.
,
2008
, “
Human Cortical Bone: The SiNuPrOs Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
2
), pp.
169
187
.10.1080/10255840701695140
16.
Hamed
,
E.
,
Lee
,
Y.
, and
Jasiuk
, I
.
,
2010
, “
Multiscale Modeling of Elastic Properties of Cortical Bone
,”
Acta Mech.
,
213
(
1–2
), pp.
131
154
.10.1007/s00707-010-0326-5
17.
Zysset
,
P. K.
, and
Curnier
,
A.
,
1995
, “
An Alternative Model for Anisotropic Elasticity Based on Fabric Tensors
,”
Mech. Mater.
,
21
(
4
), pp.
243
250
.10.1016/0167-6636(95)00018-6
18.
Franzoso
,
G.
, and
Zysset
,
P. K.
,
2009
, “
Elastic Anisotropy of Human Cortical Bone Secondary Osteons Measured by Nanoindantation
,”
ASME J. Biomech. Eng.
,
131
(
2
),
p
. 021001.10.1115/1.3005162
19.
Spiesz
,
E. M.
,
Reisinger
,
A. G.
,
Kaminsky
,
W.
,
Roschger
,
P.
,
Pahr
,
D. H.
, and
Zysset
,
P. K.
,
2013
, “
Computational and Experimental Methodology for Site-Matched Investigations of the Influence of Mineral Mass Fraction and Collagen Orientation on the Axial Indentation Modulus of Lamellar Bone
,”
J. Mech. Behav. Biomed. Mater.
,
28
, pp.
195
205
.10.1016/j.jmbbm.2013.07.004
20.
Hengsberger
,
S.
,
Kulik
,
A.
, and
Zysset
,
P. K.
,
2002
, “
Nanoindentation Discriminates the Elastic Properties of Individual Human Bone Lamellae Under Dry and Physiological Conditions
,”
Bone
,
30
(
1
), pp.
178
184
.10.1016/S8756-3282(01)00624-X
21.
Lukes
,
J.
, and
Otahal
,
S.
,
2009
, “
Nanoindentation of Porcine Bone Lamellae
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
1
), pp.
177
178
.10.1080/10255840903091460
22.
Faingold
,
A.
,
Cohen
,
S. R.
, and
Wagner
,
H. D.
,
2012
, “
Nanoindentation of Osteonal Bone Lamellae
,”
J. Mech. Behav. Biomed. Mater.
,
9
, pp.
198
206
.10.1016/j.jmbbm.2012.01.014
23.
Carnelli
,
D.
,
Vena
,
P.
,
Dao
,
M.
,
Ortiz
,
Ch.
, and
Contro
,
R.
,
2013
, “
Orientation and Size-Dependent Mechanical Modulation Within Individual Secondary Osteons in Cortical Bone Tissue
,”
J. R. Soc. Interface
,
10
(
81
), p.
20120953
.10.1098/rsif.2012.0953
24.
Varga
,
P.
,
Pacureanu
,
A.
,
Langer
,
M.
,
Suhonen
,
H.
,
Hesse
,
B.
,
Grimal
,
Q.
,
Cloetens
,
P.
,
Raum
,
K.
, and
Peyrin
,
F.
,
2013
, “
Investigation of the Three-Dimensional Orientation of Mineralized Collagen Fibrils in Human Lamellar Bone Using Synchrotron X-Ray Phase Nano-Tomography
,”
Acta Biomater.
,
9
(
9
), pp.
8118
8127
.10.1016/j.actbio.2013.05.015
25.
Delafargue
,
A.
, and
Ulm
,
F.-J.
,
2004
, “
Explicit Approximations of the Indentation Modulus of Elastically Orthotropic Solids for Conical Indenters
,”
Int. J. Solids Struct.
,
41
(
26
), pp.
7351
7360
.10.1016/j.ijsolstr.2004.06.019
26.
Korsa
,
R.
, and
Mares
,
T.
,
2012
, “
Numerical Identification of Orthotropic Coefficients of the Lamella of a Bone's Osteon
,”
Bull. Appl. Mech.
,
8
(
31
), pp.
45
53
.
27.
Mares
,
T.
,
2006
, “
Nanobiomechanical Model of Cortical Bone
,” Mechanist's Jotter, 1st ed., Czech Technical University in Prague, Prague, Czech Republic, pp.
90
116
.
28.
Goldmann
,
T.
,
2006
, “
Propagation of Acoustic Waves in Composite Materials and Cortical Bone
,” Ph.D. thesis, Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Mechanics, Prague, Czech Republic.
29.
Orias
,
A. A. E.
,
2005
, “
The Relationship Between the Mechanical Anisotropy of Human Cortical Bone Tissue and Its Microstructure
,” Ph.D. thesis, University of Notre Dame, Notre Dame, IN.
30.
Rho
,
J. Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
1997
, “
Elastic Properties of Human Cortical and Trabecular Lamellar Bone Measured by Nanoindentation
,”
Biomaterials
,
18
(
20
), pp.
1325
1330
.10.1016/S0142-9612(97)00073-2
31.
Korsa
,
R.
,
Lukes
,
J.
,
Sepitka
,
J.
,
Kytyr
,
D.
, and
Mares
,
T.
,
2014
, “
Mathematical Model of Human Osteon and Its Validation by Nanomechanical Testing of Bone Lamella
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
1
), pp.
24
25
.10.1080/10255842.2014.931078
32.
Vercher
,
A.
,
Giner
,
E.
,
Arango
,
C.
,
Tarancon
,
J. E.
, and
Fuenmayor
,
F. J.
,
2014
, “
Homogenized Stiffness Matrices for Mineralized Collagen Fibrils and Lamellar Bone Using Unit Cell Finite Element Models
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
437
449
.10.1007/s10237-013-0507-y
33.
Saada
,
A. S.
,
1974
,
Elasticity: Theory and Application
,
Pergamon Press
,
New York
.
34.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
35.
Johnson
,
K. L.
,
1970
, “
The Correlation of Indentation Experiments
,”
J. Mech. Phys. Solids
,
18
(
2
), pp.
115
126
.10.1016/0022-5096(70)90029-3
36.
Fisher-Cripps
,
A. C.
,
2004
,
Nanoindentation
(Mechanical Engineering Series),
2nd ed.
,
Springer Science + Business Media
,
LLC, New York
.10.1007/978-1-4757-5943-3
37.
Courtney
,
A. C.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
,
1996
, “
Age-Related Differences in Post-Yield Damage in Human Cortical Bone, Experiment and Model
,”
J. Biomech.
,
29
(
11
), pp.
1463
1471
.10.1016/0021-9290(96)84542-8
38.
Currey
,
J. D.
,
2004
, “
Tensile Yield in Compact Bone Is Determined by Strain, Post-Yield Behaviour by Mineral Content
,”
J. Biomech.
,
37
(
4
), pp.
549
556
.10.1016/j.jbiomech.2003.08.008
39.
Carretta
,
R.
,
Luisier
,
B.
,
Bernoulli
,
D.
,
Stüssi
,
E.
,
Müller
,
R.
, and
Lorenzetti
,
S.
,
2013
, “
Novel Method to Analyze Post-Yield Mechanical Properties at Trabecular Bone Tissue Level
,”
J. Mech. Behav. Biomed. Mater.
,
20
, pp.
6
18
.10.1016/j.jmbbm.2012.12.003
40.
Rho
,
J. Y.
,
1996
, “
An Ultrasonic Method for Measuring the Elastic Properties of Human Tibial Cortical and Cancellous Bone
,”
Ultrasonic
,
34
(
8
), pp.
777
783
.10.1016/S0041-624X(96)00078-9
41.
Maharidge
,
R.
,
1984
, “
Ultrasonic Properties and Microstructure of Bovine Bone and Haversian Bovine Bone Modeling
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
42.
Taylor
,
W. R.
,
Roland
,
E.
,
Ploeg
,
H.
,
Hertig
,
D.
,
Klabunde
,
R.
,
Warner
,
M. D.
,
Hobatho
,
M. C.
,
Rakotomanana
,
L.
, and
Clift
,
S. E.
,
2002
, “
Determination of Orthotropic Bone Elastic Constants Using FEA and Modal Analysis
,”
J. Biomech.
,
35
(
6
), pp.
767
773
.10.1016/S0021-9290(02)00022-2
43.
Crolet
,
J. M.
,
Aoubiza
,
B.
, and
Meunier
,
A.
,
1993
, “
Compact Bone: Numerical Simulation of Mechanical Characteristic
,”
J. Biomech.
,
26
(
6
), pp.
677
687
.10.1016/0021-9290(93)90031-9
44.
Huja
,
S. S.
,
Beck
,
F. M.
, and
Thurman
,
D. T.
,
2006
, “
Indentation Properties of Young and Old Osteons
,”
Calcif. Tissue Int.
,
78
(
6
), pp.
392
397
.10.1007/s00223-006-0025-3
45.
Currey
,
J. D.
,
1969
, “
The Relationship Between the Stiffness and the Mineral Content of Bone
,”
J. Biomech.
,
2
(
4
), pp.
477
480
.10.1016/0021-9290(69)90023-2
46.
Hellmich
,
C.
,
Barthelemy
,
J. F.
, and
Dormieux
,
L.
,
2004
, “
Mineral-Collagen Interactions in Elasticity of Bone Ultrastructure-A Continuum Micromechanics Approach
,”
Eur. J. Mech. A: Solids
,
23
(
5
), pp.
783
810
.10.1016/j.euromechsol.2004.05.004
47.
Dong
,
X. N.
, and
Guo
,
X. E.
,
2004
, “
The Dependence of Transversely Isotropic Elasticity of Human Femoral Cortical Bone on Porosity
,”
J. Biomech.
,
37
(
8
), pp.
1281
1287
.10.1016/j.jbiomech.2003.12.011
You do not currently have access to this content.