The human lung is known to be asymmetric and heterogeneous which leads to an inhomogeneous distribution of air. Within the scope of this paper the influence of the upper airway tree geometry on ventilation distribution and the differences between conventional mechanical ventilation (CMV) and high frequency oscillatory ventilation (HFOV) will be analyzed. The comparison is carried out under the assumption of positive pressure ventilation. Thereby, the mechanics of lung tissue is expected to play a minor role. Oscillatory flow is therefore generated numerically at a 3D model geometry of the upper human airways. For large enough frequencies in the range of HFOV (here 7 Hz) the shape of the velocity profiles changes, but this had no measurable influence on the flow distribution. The flow division is rather governed by airway tree geometry, i.e., branch length, curvature, and tortuosity. A convective net transport of fresh air to the distal branches occurs due to the relocation of mass during ins-/expiration driven by secondary flow. However, a mixing by secondary flow plays a minor role as was suggested by the visualization of particle pathlines. The phenomenon of steady streaming is further investigated by calculating the mean flow of one breathing cycle. Streaming was found to contribute only to a minor percentage to the overall mass transport in the upper lung airways.

References

References
1.
Krishnan
,
J. A.
, and
Brower
,
R. G.
,
2000
, “
High-Frequency Ventilation for Acute Lung Injury and ARDS
,”
Chest
,
118
(
3
), pp.
795
807
.10.1378/chest.118.3.795
2.
Kang
,
M.-Y.
,
Hwang
,
J.
, and
Lee
,
J.-W.
,
2011
, “
Effect of Geometric Variations on Pressure Loss for a Model Bifurcation of the Human Lung Airway
,”
ASME J. Biomech. Eng.
,
44
(
6
), pp.
1196
1199
.10.1016/j.jbiomech.2011.02.011
3.
Bauer
,
K.
,
Rudert
,
A.
, and
Brücker
,
C.
,
2012
, “
Three-Dimensional Flow Patterns in the Upper Human Airways
,”
ASME J. Biomech. Eng.
,
134
(
7
), p.
071006
.10.1115/1.4006983
4.
De Backer
,
J. W.
,
Vos
,
W. G.
,
Gorlé
,
C. D.
,
Germonpré
,
P.
,
Partoens
,
B.
,
Wuyts
,
F. L.
,
Parizel
,
P. M.
, and
De Backer
,
W.
,
2008
, “
Flow Analyses in the Lower Airways: Patient-Specific Model and Boundary Conditions
,”
Med. Eng. Phy.
,
30
(
7
), pp.
872
879
.10.1016/j.medengphy.2007.11.002
5.
Fresconi
,
F. E.
, and
Prasad
,
A. K.
,
2008
, “
Convective Dispersion During Steady Flow in the Conducting Airways of the Human Lung
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
011015
.10.1115/1.2838042
6.
Ultman
,
J. S.
,
Shaw
,
R. G.
,
Fabiano
,
D. C.
, and
Cooke
,
K. A.
,
1988
, “
Pendelluft and Mixing in a Single Bifurcation Lung Model During High-Frequency Oscillation
,”
J. Appl. Physiol.
,
65
(
1
), pp.
146
155
.
7.
Chan
,
K. P. W.
,
Stewart
,
T. E.
, and
Mehta
,
S.
,
2007
, “
High-Frequency Oscillatory Ventilation for Adult Patients With ARDS
,”
Chest
,
131
(
6
), pp.
1907
1916
.10.1378/chest.06-1549
8.
Riley
,
N.
,
2001
, “
Steady Streaming
,”
Ann. Rev. Fluid Mech.
,
33
, pp.
43
65
.10.1146/annurev.fluid.33.1.43
9.
Goldberg
,
I. S.
,
Zhang
,
Z.
, and
Tran
,
M.
,
1999
, “
Steady Streaming of Fluid in the Entrance Region of a Tube During Oscillatory Flow
,”
Phys. Fluids
,
11
(
10
), pp.
2957
2962
.10.1063/1.870154
10.
Zhang
,
Z.
,
Fadl
,
A.
,
Liu
,
C.
,
Meyer
,
D. M. L.
, and
Krafczyk
,
M.
,
2009
, “
Fluid Streaming in Micro/Minibifurcating Networks
,”
ASME J. Fluids Eng.
,
131
(
8
), p.
084501
.10.1115/1.3176973
11.
Lighthill
,
S. J.
,
1978
, “
Acoustic Streaming
,”
J. Sound Vib.
,
61
(
3
), pp.
391
418
.10.1016/0022-460X(78)90388-7
12.
Haselton
,
F. R.
, and
Scherer
,
P. W.
,
1982
, “
Flow Visualization of Steady Streaming in Oscillatory Flow Through a Bifurcating Tube
,”
J. Fluid Mech.
,
123
, pp.
315
333
.10.1017/S0022112082003085
13.
Mochizuki
,
S.
,
Togashi
,
Y.
,
Murata
,
A.
, and
Yang
,
W. Y.
,
2001
, “
Visualization Experiment of Mass Transport in Pulmonary Ventilation Inside Bronchial Tube Model
,”
J. Mech. Med. Biol.
,
1
(2), pp.
181
192
.10.1142/S0219519401000118
14.
Horsfield
,
K.
,
Dart
,
G.
,
Olson
,
D. E.
,
Filley
,
G. F.
, and
Cumming
,
G.
,
1971
, “
Models of the Human Bronchial Tree
,”
J. Appl. Physiol.
,
31
(
2
), pp.
207
217
.
15.
Weibel
,
E. R.
,
1963
,
Morphometry of the Human Lung
,
Springer
, International.
16.
Bauer
,
K.
, and
Brücker
,
C.
,
2009
, “
The Role of Ventilation Frequency in Airway Reopening
,”
ASME J. Biomech. Eng.
,
42
(
8
), pp.
1108
1113
.10.1016/j.jbiomech.2009.02.018
17.
Bauer
,
K.
,
Rudert
,
A.
, and
Brücker
,
C.
,
2011
, “
Flow Patterns and Mass Transport in a Three Dimensional Model of the Human Lung
,”
Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011)
, Sept. 21–23, VUB, Brussels, Belgium.
18.
Adler
,
K.
, and
Brücker
,
C.
,
2007
, “
Dynamic Flow in a Realistic Model of the Upper Human Lung Airways
,”
Exp. Fluids
,
43
(
2–3
), pp.
411
423
.10.1007/s00348-007-0296-0
19.
Behrens
,
T.
,
2009
, “
OpenFOAM's Basic Solvers for Linear Systems of Equations
,” http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/TimBehrens/tibeh-re port-fin.pdf
20.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Feng
,
Y.
,
2012
, “
Vapor Deposition During Cigarette Smoke Inhalation in a Subject-Specific Human Airway Model
,”
J. Aerosol Sci.
,
53
, pp.
40
60
.10.1016/j.jaerosci.2012.05.008
21.
Soni
,
B.
, and
Aliabadi
,
S.
,
2013
, “
Large-Scale CFD Simulations of Airflow and Particle Deposition in Lung Airway
,”
Comput. Fluids
,
88
, pp.
804
812
.10.1016/j.compfluid.2013.06.015
22.
Uchida
,
S.
,
1956
, “
The Pulsating Viscous Flow Superposed on the Steady Laminar Motion of Incompressible Fluid in a Circular Pipe
,”
ZAMP
,
7
(
5
), pp.
403
422
.10.1007/BF01606327
23.
Dean
,
W. R.
,
1927
, “
Note on the Notion of Fluid in a Curved Pipe
,”
Philos. Mag.
,
4
(
20
), pp.
208
223
.10.1080/14786440708564324
24.
Calay
,
R. K.
,
Kurujareon
,
J.
, and
Holdo
,
A. E.
,
2002
, “
Numerical Simulation of Respiratory Flow Patterns Within Human Lung
,”
Respir. Physiol.
,
130
(2), pp.
201
221
.
25.
Fresconi
,
F. E.
, and
Prasad
,
A. K.
,
2007
, “
Secondary Velocity Fields in the Conducting Airways of the Human Lung
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
722
732
.10.1115/1.2768374
26.
Heraty
,
B.
,
Laffey
,
J. G.
, and
Quinlan
,
N. J.
,
2008
, “
Fluid Dynamics of Gas Exchange in High-Frequency Oscillatory Ventilation: In Vitro Investigations in Idealized and Anatomically Realistic Airway Bifurcation Models
,”
Ann. Biomed. Eng.
,
36
(
11
), pp.
1856
1869
.10.1007/s10439-008-9557-1
27.
de Rochefort
,
L.
,
Vial
,
L.
,
Fodil
,
R.
,
Maître
,
X.
,
Louis
,
B.
,
Isabey
,
D.
,
Caillibotte
,
G.
,
Thiriet
,
M.
,
Bittoun
,
J.
,
Durand
,
E.
, and
Sbirlea-Apiou
,
G.
,
2007
, “
In Vitro Validation of Computational Fluid Dynamic Simulation in Human Proximal Airways With Hyperpolarized 3He Magnetic Resonance Phase-Contrast Velocimetry
,”
J. Appl. Physiol.
,
102
(
5
), pp.
2012
2023
.10.1152/japplphysiol.01610.2005
28.
Gaver
,
D. P.
, and
Grotberg
,
J. B.
,
1986
, “
An Experimental Investigation of Oscillating Flow in a Tapered Channel
,”
J. Fluid Mech.
,
172
, pp.
47
61
.10.1017/S0022112086001647
You do not currently have access to this content.