Biomaterial substrates composed of semi-aligned electrospun fibers are attractive supports for the regeneration of connective tissues because the fibers are durable under cyclic tensile loads and can guide cell adhesion, orientation, and gene expression. Previous studies on supported electrospun substrates have shown that both fiber diameter and mechanical deformation can independently influence cell morphology and gene expression. However, no studies have examined the effect of mechanical deformation and fiber diameter on unsupported meshes. Semi-aligned large (1.75 μm) and small (0.60 μm) diameter fiber meshes were prepared from degradable elastomeric poly(esterurethane urea) (PEUUR) meshes and characterized by tensile testing and scanning electron microscopy (SEM). Next, unsupported meshes were aligned between custom grips (with the stretch axis oriented parallel to axis of fiber alignment), seeded with C3H10T1/2 cells, and subjected to a static load (50 mN, adjusted daily), a cyclic load (4% strain at 0.25 Hz for 30 min, followed by a static tensile loading of 50 mN, daily), or no load. After 3 days of mechanical stimulation, confocal imaging was used to characterize cell shape, while measurements of deoxyribonucleic acid (DNA) content and messenger ribonucleic acid (mRNA) expression were used to characterize cell retention on unsupported meshes and expression of the connective tissue phenotype. Mechanical testing confirmed that these materials deform elastically to at least 10%. Cells adhered to unsupported meshes under all conditions and aligned with the direction of fiber orientation. Application of static and cyclic loads increased cell alignment. Cell density and mRNA expression of connective tissue proteins were not statistically different between experimental groups. However, on large diameter fiber meshes, static loading slightly elevated tenomodulin expression relative to the no load group, and tenascin-C and tenomodulin expression relative to the cyclic load group. These results demonstrate the feasibility of maintaining cell adhesion and alignment on semi-aligned fibrous elastomeric substrates under different mechanical conditions. The study confirms that cell morphology is sensitive to the mechanical environment and suggests that expression of select connective tissue genes may be enhanced on large diameter fiber meshes under static tensile loads.

References

References
1.
West
,
R. V.
, and
Harner
,
C. D.
,
2005
, “
Graft Selection in Anterior Cruciate Ligament Reconstruction
,”
J. Am. Acad. Orthop. Surg.
,
13
(
3
), pp.
197
207
.
2.
Guo
,
L.
,
Yang
,
L.
,
Duan
,
X.-J.
,
He
,
R.
,
Chen
,
G.-X.
,
Wang
,
F.-Y.
, and
Zhang
,
Y.
,
2012
, “
Anterior Cruciate Ligament Reconstruction With Bone–Patellar Tendon–Bone Graft: Comparison of Autograft, Fresh-Frozen Allograft, and γ-Irradiated Allograft
,”
Arthroscopy
,
28
(
2
), pp.
211
217
.10.1016/j.arthro.2011.08.314
3.
Altman
,
G. H.
,
Horan
,
R. L.
,
Lu
,
H. H.
,
Moreau
,
J.
,
Martin
,
I.
,
Richmond
,
J. C.
, and
Kaplan
,
D. L.
,
2002
, “
Silk Matrix for Tissue Engineered Anterior Cruciate Ligaments
,”
Biomaterials
,
23
(
20
), pp.
4131
4141
.10.1016/S0142-9612(02)00156-4
4.
Chen
,
J.
,
Horan
,
R. L.
,
Bramono
,
D.
,
Moreau
,
J. E.
,
Wang
,
Y.
,
Geuss
,
L. R.
,
Collette
,
A. L.
,
Volloch
,
V.
, and
Altman
,
G. H.
,
2006
, “
Monitoring Mesenchymal Stromal Cell Developmental Stage to Apply On-Time Mechanical Stimulation for Ligament Tissue Engineering
,”
Tissue Eng.
,
12
(
11
), pp.
3085
3095
.10.1089/ten.2006.12.3085
5.
Freeman
,
J. W.
,
Woods
,
M. D.
,
Cromer
,
D. A.
,
Wright
,
L. D.
, and
Laurencin
,
C. T.
,
2009
, “
Tissue Engineering of the Anterior Cruciate Ligament: The Viscoelastic Behavior and Cell Viability of a Novel Braid-Twist Scaffold
,”
J. Biomater. Sci., Polym. Ed.
,
20
(
12
), pp.
1709
1728
.10.1163/156856208X386282
6.
Freeman
,
J. W.
,
Woods
,
M. D.
,
Cromer
,
D. A.
,
Ekwueme
,
E. C.
,
Andric
,
T.
,
Atiemo
,
E. A.
,
Bijoux
,
C. H.
, and
Laurencin
,
C. T.
,
2011
, “
Evaluation of a Hydrogel-Fiber Composite for ACL Tissue Engineering
,”
J. Biomech.
,
44
(
4
), pp.
694
699
.10.1016/j.jbiomech.2010.10.043
7.
Liljensten
,
E.
,
Gisselfalt
,
K.
,
Edberg
,
B.
,
Bertilsson
,
H.
,
Flodin
,
P.
,
Nilsson
,
A.
,
Lindahl
,
A.
, and
Peterson
,
L.
,
2002
, “
Studies of Polyurethane Urea Bands for ACL Reconstruction
,”
J. Mater. Sci.: Mater. Med.
,
13
(
4
), pp.
351
359
.10.1023/A:1014380332762
8.
Gupta
,
P.
,
Elkins
,
C.
,
Long
,
T. E.
, and
Wilkes
,
G. L.
,
2005
, “
Electrospinning of Linear Homopolymers of Poly(Methyl Methacrylate): Exploring Relationships Between Fiber Formation, Viscosity, Molecular Weight and Concentration in a Good Solvent
,”
Polymer
,
46
(
13
), pp.
4799
4810
.10.1016/j.polymer.2005.04.021
9.
Balestrini
,
J. L.
, and
Billiar
,
K. L.
,
2009
, “
Magnitude and Duration of Stretch Modulate Fibroblast Remodeling
,”
ASME J. Biomech. Eng.
,
131
(
5
), p.
051005
.10.1115/1.3049527
10.
Paxton
,
J. Z.
,
Hagerty
,
P.
,
Andrick
,
J. J.
, and
Baar
,
K.
,
2012
, “
Optimizing an Intermittent Stretch Paradigm Using ERK1/2 Phosphorylation Results in Increased Collagen Synthesis in Engineered Ligaments
,”
Tissue Eng., Part A
,
18
(
3–4
), pp.
277
284
.10.1089/ten.tea.2011.0336
11.
Webb
,
K.
,
Hitchcock
,
R. W.
,
Smeal
,
R. M.
,
Li
,
W.
,
Gray
,
S. D.
, and
Tresco
,
P. A.
,
2006
, “
Cyclic Strain Increases Fibroblast Proliferation, Matrix Accumulation, and Elastic Modulus of Fibroblast-Seeded Polyurethane Constructs
,”
J. Biomech.
,
39
(
6
), pp.
1136
1144
.10.1016/j.jbiomech.2004.08.026
12.
Lee
,
C. H.
,
Shin
,
H. J.
,
Cho
,
I. H.
,
Kang
,
Y. M.
,
Kim
,
I. A.
,
Park
,
K. D.
, and
Shin
,
J. W.
,
2005
, “
Nanofiber Alignment and Direction of Mechanical Strain Affect the ECM Production of Human ACL Fibroblast
,”
Biomaterials
,
26
(
11
), pp.
1261
1270
.10.1016/j.biomaterials.2004.04.037
13.
Yin
,
Z.
,
Chen
,
X.
,
Chen
,
J. L.
,
Shen
,
W. L.
,
Hieu Nguyen
,
T. M.
,
Gao
,
L.
, and
Ouyang
,
H. W.
,
2010
, “
The Regulation of Tendon Stem Cell Differentiation by the Alignment of Nanofibers
,”
Biomaterials
,
31
(
8
), pp.
2163
2175
.10.1016/j.biomaterials.2009.11.083
14.
Bashur
,
C. A.
,
Shaffer
,
R. D.
,
Dahlgren
,
L. A.
,
Guelcher
,
S. A.
, and
Goldstein
,
A. S.
,
2009
, “
Effect of Fiber Diameter and Alignment of Electrospun Polyurethane Meshes on Mesenchymal Progenitor Cells
,”
Tissue Eng., Part A
,
15
(
9
), pp.
2435
2445
.10.1089/ten.tea.2008.0295
15.
Chaurey
,
V.
,
Block
,
F.
,
Su
,
Y.-H.
,
Chiang
,
P.-C.
,
Botchwey
,
E.
,
Chou
,
C.-F.
, and
Swami
,
N. S.
,
2012
, “
Nanofiber Size-Dependent Sensitivity of Fibroblast Directionality to Alignment Methodology of Scaffold
,”
Acta Biomater.
,
8
(
11
), pp.
3982
3990
.10.1016/j.actbio.2012.06.041
16.
Erisken
,
C.
,
Zhang
,
X.
,
Moffat
,
K. L.
,
Levine
,
W. N.
, and
Lu
,
H. H.
,
2013
, “
Scaffold Fiber Diameter Regulates Human Tendon Fibroblast Growth and Differentiation
,”
Tissue Eng., Part A
,
19
(
3–4
), pp.
519
528
.10.1089/ten.tea.2012.0072
17.
Cardwell
,
R. D.
,
Dahlgren
,
L. A.
, and
Goldstein
,
A. S.
,
2014
, “
Electrospun Fibre Diameter, Not Alignment, Affects Mesenchymal Stem Cell Differentiation Into the Tendon/Ligament Lineage
,”
J. Tissue Eng. Regener. Med.
,
8
(
12
), pp.
937
945
.10.1002/term.1589
18.
Arnoczky
,
S. P.
,
Lavagnino
,
M.
, and
Egerbacher
,
M.
,
2007
, “
The Mechanobiological Aetiopathogenesis of Tendinopathy: Is it the Over-Stimulation or the Under-Stimulation of Tendon Cells?
,”
Int. J. Exp. Pathol.
,
88
(
4
), pp.
217
226
.10.1111/j.1365-2613.2007.00548.x
19.
Iatridis
,
J. C.
,
MaClean
,
J. J.
, and
Ryan
,
D. A.
,
2005
, “
Mechanical Damage to the Intervertebral Disc Annulus Fibrosus Subjected to Tensile Loading
,”
J. Biomech.
,
38
(
3
), pp.
557
565
.10.1016/j.jbiomech.2004.03.038
20.
Wang
,
J. H.
,
2006
, “
Mechanobiology of Tendon
,”
J. Biomech.
,
39
(
9
), pp.
1563
1582
.10.1016/j.jbiomech.2005.05.011
21.
Barber
,
J. G.
,
Handorf
,
A. M.
,
Allee
,
T. J.
, and
Li
,
W.-J.
,
2011
, “
Braided Nanofibrous Scaffold for Tendon and Ligament Tissue Engineering
,”
Tissue Eng., Part A
,
19
(
11–12
), pp.
1265
1274
.10.1089/ten.tea.2010.0538
22.
Kaneko
,
D.
,
Sasazaki
,
Y.
,
Kikuchi
,
T.
,
Ono
,
T.
,
Nemoto
,
K.
,
Matsumoto
,
H.
, and
Toyama
,
Y.
,
2009
, “
Temporal Effects of Cyclic Stretching on Distribution and Gene Expression of Integrin and Cytoskeleton by Ligament Fibroblasts In Vitro
,”
Connect. Tissue Res.
,
50
(
4
), pp.
263
269
.10.1080/03008200902846270
23.
Gilbert
,
T. W.
,
Stewart-Akers
,
A. M.
,
Sydeski
,
J.
,
Nguyen
,
T. D.
,
Badylak
,
S. F.
, and
Woo
,
S. L.
,
2007
, “
Gene Expression by Fibroblasts Seeded on Small Intestinal Submucosa and Subjected to Cyclic Stretching
,”
Tissue Eng.
,
13
(
6
), pp.
1313
1323
.10.1089/ten.2006.0318
24.
Teh
,
T. K.
,
Toh
,
S. L.
, and
Goh
,
J. C.
,
2013
, “
Aligned Fibrous Scaffolds for Enhanced Mechanoresponse and Tenogenesis of Mesenchymal Stem Cells
,”
Tissue Eng., Part A
,
19
(
11–12
), pp.
1360
1372
.10.1089/ten.tea.2012.0279
25.
Kluge
,
J. A.
,
Leisk
,
G. G.
,
Cardwell
,
R. D.
,
Fernandes
,
A. P.
,
House
,
M.
,
Ward
,
A.
,
Dorfmann
,
A. L.
, and
Kaplan
,
D. L.
,
2011
, “
Bioreactor System Using Noninvasive Imaging and Mechanical Stretch for Biomaterial Screening
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1390
1402
.10.1007/s10439-010-0243-8
26.
Livak
,
K. J.
, and
Schmittgen
,
T. D.
,
2001
, “
Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method
,”
Methods
,
25
(
4
), pp.
402
408
.10.1006/meth.2001.1262
27.
Kwon
,
K. I.
,
Kidoaki
,
S.
, and
Matsuda
,
T.
,
2005
, “
Electrospun Nano- to Microfiber Fabrics Made of Biodegradable Copolyesters: Structural Characteristics, Mechanical Properties and Cell Adhesion Potential
,”
Biomaterials
,
26
(
18
), pp.
3929
3939
.10.1016/j.biomaterials.2004.10.007
28.
Kidoaki
,
S.
,
Kwon
,
I. K.
, and
Matsuda
,
T.
,
2006
, “
Structural Features and Mechanical Properties of In Situ-Bonded Meshes of Segmented Polyurethane Electrospun From Mixed Solvents
,”
J. Biomed. Mater. Res., Part B
,
76
(
1
), pp.
219
229
.10.1002/jbm.b.30336
29.
Kahn
,
C. J.
,
Ziani
,
K.
,
Zhang
,
Y. M.
,
Liu
,
J.
,
Tran
,
N.
,
Babin
,
J.
,
de Isla
,
N.
,
Six
,
J.-L.
, and
Wang
,
X.
,
2013
, “
Mechanical Properties Evolution of a PLGA-PLCL Composite Scaffold for Ligament Tissue Engineering Under Static and Cyclic Traction-Torsion In Vitro Culture Conditions
,”
J. Biomater. Sci., Polym. Ed.
,
24
(
8
), pp.
899
911
.10.1080/09205063.2012.727265
30.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.10.1016/j.cell.2006.06.044
You do not currently have access to this content.